Fast Correlation Attacks on Grain-like Small State Stream Ciphers

In this paper, we study the security of Grain-like small state stream ciphers by fast correlation attacks, which are commonly regarded as classical cryptanalytic methods against LFSR-based stream ciphers. We extend the cascaded structure adopted in such primitives in general and show how to restore...

Full description

Bibliographic Details
Main Authors: Bin Zhang, Xinxin Gong, Willi Meier
Format: Article
Language:English
Published: Ruhr-Universität Bochum 2017-12-01
Series:IACR Transactions on Symmetric Cryptology
Subjects:
Online Access:https://tosc.iacr.org/index.php/ToSC/article/view/803
Description
Summary:In this paper, we study the security of Grain-like small state stream ciphers by fast correlation attacks, which are commonly regarded as classical cryptanalytic methods against LFSR-based stream ciphers. We extend the cascaded structure adopted in such primitives in general and show how to restore the full internal state part-by-part if the non-linear combining function meets some characteristic. As a case study, we present a key recovery attack against Fruit, a tweaked version of Sprout that employs key-dependent state updating in the keystream generation phase. Our attack requires 262.8 Fruit encryptions and 222.3 keystream bits to determine the 80-bit secret key. Practical simulations on a small-scale version confirmed our results.
ISSN:2519-173X