EIF4G1 is a novel candidate gene associated with severe asthenozoospermia

Abstract Background Asthenozoospermia (AZS), also known as asthenospermia, is characterized by reduced motility of ejaculated spermatozoa and is detected in more than 40% of infertile patients. Because the proportion of progressive spermatozoa in severe AZS is <1%, severe AZS is an urgent challen...

Full description

Bibliographic Details
Main Authors: Yanwei Sha, Wensheng Liu, Xianjing Huang, Yang Li, Zhiyong Ji, Libin Mei, Shaobin Lin, Shuangbo Kong, Jinhua Lu, Lingyuan Kong, Xingshen Zhu, Zhongxian Lu, Lu Ding
Format: Article
Language:English
Published: Wiley 2019-08-01
Series:Molecular Genetics & Genomic Medicine
Subjects:
Online Access:https://doi.org/10.1002/mgg3.807
Description
Summary:Abstract Background Asthenozoospermia (AZS), also known as asthenospermia, is characterized by reduced motility of ejaculated spermatozoa and is detected in more than 40% of infertile patients. Because the proportion of progressive spermatozoa in severe AZS is <1%, severe AZS is an urgent challenge in reproductive medicine. Several genes have been reported to be relevant to severe asthenospermia. However, these gene mutations are found only in sporadic cases and can explain only a small fraction of severe AZS, so additional genetic pathogenies need to be explored. Methods and results By screening the variant genes in a patient with severe AZS using whole exome sequencing, we identified biallelic mutations c.2521C>T: p.(Pro841Ser) (NC_000003.11: g.184043412C>T) in exon13 and c.2957C>G: p.(Ala986Gly) (NC_000003.11: g.184045117C>G) in exon17 in the eukaryotic translation initiation factor 4 gamma 1 gene (EIF4G1, RefSeq: NM_004953.4, OMIM: 600495) of the patient. Both of the mutation sites are rare and potentially deleterious. Transmission electron microscopy analysis showed a disrupted axonemal structure with mitochondrial sheath defects. The EIF4G1 protein level was extremely low, and the mitochondrial marker cytochrome c oxidase subunit 4I1 (COXIV, OMIM: 123864) and mitochondrially encoded ATP synthase 6 (ATP6, OMIM: 516060) protein levels were also decreased in the patient's spermatozoa as revealed by WB and IF analysis. This infertility associated with this condition was overcome by intracytoplasmic sperm injections, as his wife became pregnant successfully. Conclusion Our experimental findings indicate that the EIF4G1 gene is a novel candidate gene that may be relevant to severe AZS.
ISSN:2324-9269