Ovarian volume partially explains associations of phthalate biomarkers with anti-Müllerian hormone and estradiol in midlife women

Background/objectives: Women are ubiquitously exposed to endocrine disruptors, including phthalates. Ovarian follicles undergoing folliculogenesis (indirectly measured by ovarian volume) produce anti-Müllerian hormone (AMH) and estradiol (E2). We evaluated associations of phthalates with ovarian vol...

Full description

Bibliographic Details
Main Authors: Maria E. Cinzori, Diana C. Pacyga, Elnur Babayev, Francesca E. Duncan, Zhong Li, Paige L. Williams, Jodi A. Flaws, Rita S. Strakovsky
Format: Article
Language:English
Published: Elsevier 2023-02-01
Series:Environment International
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0160412023000442
Description
Summary:Background/objectives: Women are ubiquitously exposed to endocrine disruptors, including phthalates. Ovarian follicles undergoing folliculogenesis (indirectly measured by ovarian volume) produce anti-Müllerian hormone (AMH) and estradiol (E2). We evaluated associations of phthalates with ovarian volume to assess whether this explained prior positive associations of phthalates with AMH and E2. Methods: Women ages 45–54 years (n = 614) had transvaginal ultrasounds of right/left ovaries to calculate mean ovarian volume. Women provided up-to-four urine and blood samples for quantifying AMH (first serum sample), E2 (all serum samples), and nine phthalate metabolites (from pooled urine, representing six parent phthalates). Multivariable linear or logistic regression models (for individual phthalate biomarkers), as well as weighted quantile sum (WQS) regression (for mixture analyses) evaluated associations of phthalate biomarkers with ovarian volume. Using cross-sectional mediation analysis, we assessed whether associations of phthalates with ovarian volume partially explained those of phthalates with AMH or E2. Results: Most women were non-Hispanic White (68%) and pre-menopausal (67%) with higher urinary phthalate metabolite concentrations than U.S. women. In single-pollutant models, 10% increases in mono(3-carboxypropyl) phthalate (MCPP) and monobenzyl phthalate (MBzP) were associated with 0.44% (95% CI: −0.02%, 0.91%) and 0.62% (95% CI: 0.02%, 1.23%) larger ovarian volumes, respectively. As a cumulative mixture, 10% increases in the phthalate mixture were associated with 2.89% larger ovarian volume (95%CI: 0.27, 5.59) with MCPP (35%) and MBzP (41%) identified as major contributors. Higher ovarian volume due to a 10% increase in MBzP (indirect effect OR: 1.004; 95% CI: 1.00, 1.01) explained 16% of the positive association between MBzP and higher AMH, whereas higher ovarian volume due to a 10% increase in MCPP (indirect effect %Δ: 0.11; 95% CI: −0.01, 0.22) explained 23% of the positive association between MCPP and E2. Conclusion: In this cross-sectional study, phthalates were associated with increased ovarian volume, with implications for midlife hormone production.
ISSN:0160-4120