Summary: | Hypertriglyceridemia induces multiple changes in lipoprotein composition. Here we investigate how one of these modifications, triglyceride (TG) enrichment, affects HDL and LDL function when this alteration occurs under conditions in which more polar components can naturally re-equilibrate. TG-enriched lipoproteins were produced by co-incubating VLDL, LDL, and HDL with cholesteryl ester (CE) transfer protein. The resulting 2.5-fold increase in TG/CE ratio did not measurably alter the apoprotein composition of LDL or HDL, or modify LDL size. HDL mean diameter increased slightly from 9.1 to 9.4 nm. Modified LDL was internalized by fibroblasts normally, but its protein was degraded much less efficiently. This likely reflects an aberrant apolipoprotein B (apoB) conformation, as suggested by its resistance to V8 protease digestion and altered LDL electrophoretic mobility. TG-enriched LDL ineffectively down-regulated cholesterol biosynthesis compared with control LDL at the same protein concentration, but was equivalent in sterol regulation when compared on a cholesterol basis. TG-enriched HDL promoted greater net cholesterol efflux from cholesterol-loaded J774 cells. However, cholesterol associated with TG-enriched HDL was inefficiently esterified by lecithin:cholesterol acyltransferase, and TG-enriched HDLs were poor donors of CE to HepG2 hepatocytes by selective uptake.We conclude that TG-enrichment, in the absence of other significant alterations in lipoprotein composition, is sufficient to alter both cholesterol delivery and removal mechanisms. Some of these abnormalities may contribute to increased coronary disease in hypertriglyceridemia.
|