Clasificación digital de masas nubosas a partir de imágenes meteorológicas usando algoritmos de aprendizaje de máquina
La identificación exacta de nubes precipitantes es una tarea difícil. En el presente trabajo se aplicaron los algoritmos Máquinas de Soporte Vectorial, Árboles de Decisión y Bosques Aleatorios para discriminar entre nubes precipitantes y nubes no precipitantes, a partir de una imagen meteorológica d...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Universidad de Antioquia
2014-01-01
|
Series: | Revista Facultad de Ingeniería Universidad de Antioquia |
Subjects: | |
Online Access: | http://www.redalyc.org/articulo.oa?id=43032606004 |
Summary: | La identificación exacta de nubes precipitantes es una tarea difícil. En el presente trabajo se aplicaron los algoritmos Máquinas de Soporte Vectorial, Árboles de Decisión y Bosques Aleatorios para discriminar entre nubes precipitantes y nubes no precipitantes, a partir de una imagen meteorológica del satélite GOES-13 que cubre el territorio colombiano. El objetivo del trabajo fue evaluar el desempeño de los algoritmos de aprendizaje de máquina (ML), para la clasificación digital de masas nubosas, en términos de la exactitud temática de la clasificación usando como referencia el algoritmo convencional distancia de Mahalanobis. Los resultados muestran que los algoritmos ML proporcionan una clasificación de masas de nubes más exacta que la obtenida por algoritmos convencionales. La mejor exactitud fue obtenida usando Bosques Aleatorios (RF), con una exactitud temática global de 97%. Adicionalmente, la clasificación obtenida con RF fue comparada pixel a pixel con estimaciones de precipitación de la NASA Tropical Rainfall Measurement Mission (TRMM) obteniendo una exactitud global del 94%. De acuerdo con este estudio, los algoritmos ML pueden ser usados para mejorar los actuales métodos de identificación de nubes precipitantes. |
---|---|
ISSN: | 0120-6230 2422-2844 |