Investigation of the Relationship between the 2D and 3D Box-Counting Fractal Properties and Power Law Fractal Properties of Aggregates

The fractal dimension <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mi>f</mi></msub></mrow></semantics></math></inline-formula>...

Full description

Bibliographic Details
Main Authors: Rui Wang, Abhinandan Kumar Singh, Subash Reddy Kolan, Evangelos Tsotsas
Format: Article
Language:English
Published: MDPI AG 2022-12-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/6/12/728
_version_ 1797458259278299136
author Rui Wang
Abhinandan Kumar Singh
Subash Reddy Kolan
Evangelos Tsotsas
author_facet Rui Wang
Abhinandan Kumar Singh
Subash Reddy Kolan
Evangelos Tsotsas
author_sort Rui Wang
collection DOAJ
description The fractal dimension <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mi>f</mi></msub></mrow></semantics></math></inline-formula> has been widely used to describe the structural and morphological characteristics of aggregates. Box-counting (BC) and power law (PL) are the most common methods to calculate the fractal dimension of aggregates. However, the prefactor <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>k</mi></semantics></math></inline-formula>, as another important fractal property, has received less attention. Furthermore, there is no relevant research about the BC prefactor (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mrow><mi>B</mi><mi>C</mi></mrow></msub></mrow></semantics></math></inline-formula>). This work applied a tunable aggregation model to generate a series of three-dimensional aggregates with different input parameters (power law fractal properties: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mrow><mi>f</mi><mo>,</mo><mi>P</mi><mi>L</mi></mrow></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mrow><mi>P</mi><mi>L</mi></mrow></msub></mrow></semantics></math></inline-formula>, and the number of primary particles <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mi>P</mi></msub></mrow></semantics></math></inline-formula>). Then, a projection method is applied to obtain the 2D information of the generated aggregates. The fractal properties (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mrow><mi>B</mi><mi>C</mi></mrow></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mrow><mi>f</mi><mo>,</mo><mi>B</mi><mi>C</mi></mrow></msub></mrow></semantics></math></inline-formula>) of the generated aggregates are estimated by both, for 2D and 3D BC methods. Next, the relationships between the box-counting fractal properties and power law fractal properties are investigated. Notably, 2D information is easier achieved than 3D data in real processes, especially for aggregates made of nanoparticles. Therefore, correlations between 3D BC and 3D PL fractal properties with 2D BC properties are of potentially high importance and established in the present work. Finally, a comparison of these correlations with a previous one (not considering <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>k</mi></semantics></math></inline-formula>) is performed, and comparison results show that the new correlations are more accurate.
first_indexed 2024-03-09T16:35:28Z
format Article
id doaj.art-a18e21bbf74c44329eb671738767982d
institution Directory Open Access Journal
issn 2504-3110
language English
last_indexed 2024-03-09T16:35:28Z
publishDate 2022-12-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj.art-a18e21bbf74c44329eb671738767982d2023-11-24T14:57:40ZengMDPI AGFractal and Fractional2504-31102022-12-0161272810.3390/fractalfract6120728Investigation of the Relationship between the 2D and 3D Box-Counting Fractal Properties and Power Law Fractal Properties of AggregatesRui Wang0Abhinandan Kumar Singh1Subash Reddy Kolan2Evangelos Tsotsas3Thermal Process Engineering, Otto von Guericke University, 39106 Magdeburg, GermanyThermal Process Engineering, Otto von Guericke University, 39106 Magdeburg, GermanyThermal Process Engineering, Otto von Guericke University, 39106 Magdeburg, GermanyThermal Process Engineering, Otto von Guericke University, 39106 Magdeburg, GermanyThe fractal dimension <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mi>f</mi></msub></mrow></semantics></math></inline-formula> has been widely used to describe the structural and morphological characteristics of aggregates. Box-counting (BC) and power law (PL) are the most common methods to calculate the fractal dimension of aggregates. However, the prefactor <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>k</mi></semantics></math></inline-formula>, as another important fractal property, has received less attention. Furthermore, there is no relevant research about the BC prefactor (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mrow><mi>B</mi><mi>C</mi></mrow></msub></mrow></semantics></math></inline-formula>). This work applied a tunable aggregation model to generate a series of three-dimensional aggregates with different input parameters (power law fractal properties: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mrow><mi>f</mi><mo>,</mo><mi>P</mi><mi>L</mi></mrow></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mrow><mi>P</mi><mi>L</mi></mrow></msub></mrow></semantics></math></inline-formula>, and the number of primary particles <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mi>P</mi></msub></mrow></semantics></math></inline-formula>). Then, a projection method is applied to obtain the 2D information of the generated aggregates. The fractal properties (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mrow><mi>B</mi><mi>C</mi></mrow></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mrow><mi>f</mi><mo>,</mo><mi>B</mi><mi>C</mi></mrow></msub></mrow></semantics></math></inline-formula>) of the generated aggregates are estimated by both, for 2D and 3D BC methods. Next, the relationships between the box-counting fractal properties and power law fractal properties are investigated. Notably, 2D information is easier achieved than 3D data in real processes, especially for aggregates made of nanoparticles. Therefore, correlations between 3D BC and 3D PL fractal properties with 2D BC properties are of potentially high importance and established in the present work. Finally, a comparison of these correlations with a previous one (not considering <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>k</mi></semantics></math></inline-formula>) is performed, and comparison results show that the new correlations are more accurate.https://www.mdpi.com/2504-3110/6/12/728aggregationagglomerationfractal propertiesbox-counting prefactorpower law prefactorstructure in 3D
spellingShingle Rui Wang
Abhinandan Kumar Singh
Subash Reddy Kolan
Evangelos Tsotsas
Investigation of the Relationship between the 2D and 3D Box-Counting Fractal Properties and Power Law Fractal Properties of Aggregates
Fractal and Fractional
aggregation
agglomeration
fractal properties
box-counting prefactor
power law prefactor
structure in 3D
title Investigation of the Relationship between the 2D and 3D Box-Counting Fractal Properties and Power Law Fractal Properties of Aggregates
title_full Investigation of the Relationship between the 2D and 3D Box-Counting Fractal Properties and Power Law Fractal Properties of Aggregates
title_fullStr Investigation of the Relationship between the 2D and 3D Box-Counting Fractal Properties and Power Law Fractal Properties of Aggregates
title_full_unstemmed Investigation of the Relationship between the 2D and 3D Box-Counting Fractal Properties and Power Law Fractal Properties of Aggregates
title_short Investigation of the Relationship between the 2D and 3D Box-Counting Fractal Properties and Power Law Fractal Properties of Aggregates
title_sort investigation of the relationship between the 2d and 3d box counting fractal properties and power law fractal properties of aggregates
topic aggregation
agglomeration
fractal properties
box-counting prefactor
power law prefactor
structure in 3D
url https://www.mdpi.com/2504-3110/6/12/728
work_keys_str_mv AT ruiwang investigationoftherelationshipbetweenthe2dand3dboxcountingfractalpropertiesandpowerlawfractalpropertiesofaggregates
AT abhinandankumarsingh investigationoftherelationshipbetweenthe2dand3dboxcountingfractalpropertiesandpowerlawfractalpropertiesofaggregates
AT subashreddykolan investigationoftherelationshipbetweenthe2dand3dboxcountingfractalpropertiesandpowerlawfractalpropertiesofaggregates
AT evangelostsotsas investigationoftherelationshipbetweenthe2dand3dboxcountingfractalpropertiesandpowerlawfractalpropertiesofaggregates