Investigation of the Relationship between the 2D and 3D Box-Counting Fractal Properties and Power Law Fractal Properties of Aggregates
The fractal dimension <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mi>f</mi></msub></mrow></semantics></math></inline-formula>...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-12-01
|
Series: | Fractal and Fractional |
Subjects: | |
Online Access: | https://www.mdpi.com/2504-3110/6/12/728 |
_version_ | 1797458259278299136 |
---|---|
author | Rui Wang Abhinandan Kumar Singh Subash Reddy Kolan Evangelos Tsotsas |
author_facet | Rui Wang Abhinandan Kumar Singh Subash Reddy Kolan Evangelos Tsotsas |
author_sort | Rui Wang |
collection | DOAJ |
description | The fractal dimension <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mi>f</mi></msub></mrow></semantics></math></inline-formula> has been widely used to describe the structural and morphological characteristics of aggregates. Box-counting (BC) and power law (PL) are the most common methods to calculate the fractal dimension of aggregates. However, the prefactor <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>k</mi></semantics></math></inline-formula>, as another important fractal property, has received less attention. Furthermore, there is no relevant research about the BC prefactor (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mrow><mi>B</mi><mi>C</mi></mrow></msub></mrow></semantics></math></inline-formula>). This work applied a tunable aggregation model to generate a series of three-dimensional aggregates with different input parameters (power law fractal properties: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mrow><mi>f</mi><mo>,</mo><mi>P</mi><mi>L</mi></mrow></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mrow><mi>P</mi><mi>L</mi></mrow></msub></mrow></semantics></math></inline-formula>, and the number of primary particles <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mi>P</mi></msub></mrow></semantics></math></inline-formula>). Then, a projection method is applied to obtain the 2D information of the generated aggregates. The fractal properties (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mrow><mi>B</mi><mi>C</mi></mrow></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mrow><mi>f</mi><mo>,</mo><mi>B</mi><mi>C</mi></mrow></msub></mrow></semantics></math></inline-formula>) of the generated aggregates are estimated by both, for 2D and 3D BC methods. Next, the relationships between the box-counting fractal properties and power law fractal properties are investigated. Notably, 2D information is easier achieved than 3D data in real processes, especially for aggregates made of nanoparticles. Therefore, correlations between 3D BC and 3D PL fractal properties with 2D BC properties are of potentially high importance and established in the present work. Finally, a comparison of these correlations with a previous one (not considering <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>k</mi></semantics></math></inline-formula>) is performed, and comparison results show that the new correlations are more accurate. |
first_indexed | 2024-03-09T16:35:28Z |
format | Article |
id | doaj.art-a18e21bbf74c44329eb671738767982d |
institution | Directory Open Access Journal |
issn | 2504-3110 |
language | English |
last_indexed | 2024-03-09T16:35:28Z |
publishDate | 2022-12-01 |
publisher | MDPI AG |
record_format | Article |
series | Fractal and Fractional |
spelling | doaj.art-a18e21bbf74c44329eb671738767982d2023-11-24T14:57:40ZengMDPI AGFractal and Fractional2504-31102022-12-0161272810.3390/fractalfract6120728Investigation of the Relationship between the 2D and 3D Box-Counting Fractal Properties and Power Law Fractal Properties of AggregatesRui Wang0Abhinandan Kumar Singh1Subash Reddy Kolan2Evangelos Tsotsas3Thermal Process Engineering, Otto von Guericke University, 39106 Magdeburg, GermanyThermal Process Engineering, Otto von Guericke University, 39106 Magdeburg, GermanyThermal Process Engineering, Otto von Guericke University, 39106 Magdeburg, GermanyThermal Process Engineering, Otto von Guericke University, 39106 Magdeburg, GermanyThe fractal dimension <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mi>f</mi></msub></mrow></semantics></math></inline-formula> has been widely used to describe the structural and morphological characteristics of aggregates. Box-counting (BC) and power law (PL) are the most common methods to calculate the fractal dimension of aggregates. However, the prefactor <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>k</mi></semantics></math></inline-formula>, as another important fractal property, has received less attention. Furthermore, there is no relevant research about the BC prefactor (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mrow><mi>B</mi><mi>C</mi></mrow></msub></mrow></semantics></math></inline-formula>). This work applied a tunable aggregation model to generate a series of three-dimensional aggregates with different input parameters (power law fractal properties: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mrow><mi>f</mi><mo>,</mo><mi>P</mi><mi>L</mi></mrow></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mrow><mi>P</mi><mi>L</mi></mrow></msub></mrow></semantics></math></inline-formula>, and the number of primary particles <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mi>P</mi></msub></mrow></semantics></math></inline-formula>). Then, a projection method is applied to obtain the 2D information of the generated aggregates. The fractal properties (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mrow><mi>B</mi><mi>C</mi></mrow></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mrow><mi>f</mi><mo>,</mo><mi>B</mi><mi>C</mi></mrow></msub></mrow></semantics></math></inline-formula>) of the generated aggregates are estimated by both, for 2D and 3D BC methods. Next, the relationships between the box-counting fractal properties and power law fractal properties are investigated. Notably, 2D information is easier achieved than 3D data in real processes, especially for aggregates made of nanoparticles. Therefore, correlations between 3D BC and 3D PL fractal properties with 2D BC properties are of potentially high importance and established in the present work. Finally, a comparison of these correlations with a previous one (not considering <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>k</mi></semantics></math></inline-formula>) is performed, and comparison results show that the new correlations are more accurate.https://www.mdpi.com/2504-3110/6/12/728aggregationagglomerationfractal propertiesbox-counting prefactorpower law prefactorstructure in 3D |
spellingShingle | Rui Wang Abhinandan Kumar Singh Subash Reddy Kolan Evangelos Tsotsas Investigation of the Relationship between the 2D and 3D Box-Counting Fractal Properties and Power Law Fractal Properties of Aggregates Fractal and Fractional aggregation agglomeration fractal properties box-counting prefactor power law prefactor structure in 3D |
title | Investigation of the Relationship between the 2D and 3D Box-Counting Fractal Properties and Power Law Fractal Properties of Aggregates |
title_full | Investigation of the Relationship between the 2D and 3D Box-Counting Fractal Properties and Power Law Fractal Properties of Aggregates |
title_fullStr | Investigation of the Relationship between the 2D and 3D Box-Counting Fractal Properties and Power Law Fractal Properties of Aggregates |
title_full_unstemmed | Investigation of the Relationship between the 2D and 3D Box-Counting Fractal Properties and Power Law Fractal Properties of Aggregates |
title_short | Investigation of the Relationship between the 2D and 3D Box-Counting Fractal Properties and Power Law Fractal Properties of Aggregates |
title_sort | investigation of the relationship between the 2d and 3d box counting fractal properties and power law fractal properties of aggregates |
topic | aggregation agglomeration fractal properties box-counting prefactor power law prefactor structure in 3D |
url | https://www.mdpi.com/2504-3110/6/12/728 |
work_keys_str_mv | AT ruiwang investigationoftherelationshipbetweenthe2dand3dboxcountingfractalpropertiesandpowerlawfractalpropertiesofaggregates AT abhinandankumarsingh investigationoftherelationshipbetweenthe2dand3dboxcountingfractalpropertiesandpowerlawfractalpropertiesofaggregates AT subashreddykolan investigationoftherelationshipbetweenthe2dand3dboxcountingfractalpropertiesandpowerlawfractalpropertiesofaggregates AT evangelostsotsas investigationoftherelationshipbetweenthe2dand3dboxcountingfractalpropertiesandpowerlawfractalpropertiesofaggregates |