Summary: | The Jahn–Teller effect (JTE) widely exists in polyatomic systems including organic molecules, nano-magnets, and solid-state defects. Detecting the JTE at single-molecule level can provide unique properties about the detected individual object. However, such measurements are challenging because of the weak signals associated with a single quantum object. Here, we propose that the dynamic JTE of single defects in solids can be observed with nearby quantum sensors. With numerical simulations, we demonstrate the real-time monitoring of JT axis jumps between different stable configurations of single substitutional nitrogen defect centers (P1 centers) in diamond. This is achieved by measuring the spin coherence of a single nitrogen-vacancy (NV) center near the P1 center with the double electron-electron resonance technique. Our work extends the ability of NV center as a quantum probe to sense the rich physics in various electron-vibrational coupled systems.
|