Diabetes Aggravates Photoreceptor Pathologies in a Mouse Model for Ocular Vitamin A Deficiency

Emerging evidence indicates that diabetes disturbs photoreceptor function and vitamin A homeostasis. However, the biochemical basis of this phenotype is not well established. Here, we compared the effects of streptozotocin-induced diabetes in wild-type (WT) mice and <i>Stra6<sup>-/-</...

Full description

Bibliographic Details
Main Authors: Srinivasagan Ramkumar, Vipul M. Parmar, Jean Moon, Chieh Lee, Patricia R. Taylor, Johannes von Lintig
Format: Article
Language:English
Published: MDPI AG 2022-06-01
Series:Antioxidants
Subjects:
Online Access:https://www.mdpi.com/2076-3921/11/6/1142
Description
Summary:Emerging evidence indicates that diabetes disturbs photoreceptor function and vitamin A homeostasis. However, the biochemical basis of this phenotype is not well established. Here, we compared the effects of streptozotocin-induced diabetes in wild-type (WT) mice and <i>Stra6<sup>-/-</sup></i> mice, a mouse model for ocular vitamin A deficiency. After 8 weeks, diabetes increased serum retinyl esters in mice of both genotypes. The eyes of diabetic WT mice displayed increased superoxide levels but no changes in retinoid concentrations. Diabetic <i>Stra6<sup>-/-</sup></i> mice showed increased ocular retinoid concentrations, but superoxide levels remained unchanged. After 30 weeks, significant alterations in liver and fat retinoid concentrations were observed in diabetic mice. Diabetic WT mice exhibited a decreased expression of visual cycle proteins and a thinning of the photoreceptor layer. <i>Stra6<sup>-/-</sup></i> mice displayed significantly lower ocular retinoid concentration than WT mice. An altered retinal morphology and a reduced expression of photoreceptor marker genes paralleled these biochemical changes and were more pronounced in the diabetic animals. Taken together, we observed that diabetes altered vitamin A homeostasis in several organ systems and aggravated photoreceptor pathologies in the vitamin-deficient mouse eyes.
ISSN:2076-3921