Generalized B\'{e}zier curves based on Bernstein-Stancu-Chlodowsky type operators

In this paper, we use the blending functions of Bernstein-Stancu-Chlodowsky type operators with shifted knots for construction of modified Chlodowsky B\'{e}zier curves. We study the nature of degree elevation and degree reduction for B\'{e}zier Bernstein-Stancu-Chlodowsky functions with s...

Full description

Bibliographic Details
Main Authors: Kejal Khatri, Vishnu Narayan Mishra
Format: Article
Language:English
Published: Sociedade Brasileira de Matemática 2022-02-01
Series:Boletim da Sociedade Paranaense de Matemática
Online Access:https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/52003
_version_ 1797633507898425344
author Kejal Khatri
Vishnu Narayan Mishra
author_facet Kejal Khatri
Vishnu Narayan Mishra
author_sort Kejal Khatri
collection DOAJ
description In this paper, we use the blending functions of Bernstein-Stancu-Chlodowsky type operators with shifted knots for construction of modified Chlodowsky B\'{e}zier curves. We study the nature of degree elevation and degree reduction for B\'{e}zier Bernstein-Stancu-Chlodowsky functions with shifted knots for $t \in [\frac{\gamma}{n+\delta},\frac{n+\gamma}{n+\delta}]$. We also present a de Casteljau algorithm to compute Bernstein B\'{e}zier curves with shifted knots. The new curves have some properties similar to B\'{e}zier curves. Furthermore, some fundamental properties for Bernstein B\'{e}zier curves are discussed. Our generalizations show more flexibility in taking the value of $\gamma$ and $\delta$ and advantage in shape control of curves. The shape parameters give more convenience for the curve modelling.
first_indexed 2024-03-11T11:55:00Z
format Article
id doaj.art-a19d3c1c1ce9496bb6a6cf5b402f94d3
institution Directory Open Access Journal
issn 0037-8712
2175-1188
language English
last_indexed 2024-03-11T11:55:00Z
publishDate 2022-02-01
publisher Sociedade Brasileira de Matemática
record_format Article
series Boletim da Sociedade Paranaense de Matemática
spelling doaj.art-a19d3c1c1ce9496bb6a6cf5b402f94d32023-11-08T19:49:19ZengSociedade Brasileira de MatemáticaBoletim da Sociedade Paranaense de Matemática0037-87122175-11882022-02-014010.5269/bspm.52003Generalized B\'{e}zier curves based on Bernstein-Stancu-Chlodowsky type operatorsKejal Khatri0Vishnu Narayan Mishra1Govt. College SimalwaraIndira Gandhi National Tribal University In this paper, we use the blending functions of Bernstein-Stancu-Chlodowsky type operators with shifted knots for construction of modified Chlodowsky B\'{e}zier curves. We study the nature of degree elevation and degree reduction for B\'{e}zier Bernstein-Stancu-Chlodowsky functions with shifted knots for $t \in [\frac{\gamma}{n+\delta},\frac{n+\gamma}{n+\delta}]$. We also present a de Casteljau algorithm to compute Bernstein B\'{e}zier curves with shifted knots. The new curves have some properties similar to B\'{e}zier curves. Furthermore, some fundamental properties for Bernstein B\'{e}zier curves are discussed. Our generalizations show more flexibility in taking the value of $\gamma$ and $\delta$ and advantage in shape control of curves. The shape parameters give more convenience for the curve modelling. https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/52003
spellingShingle Kejal Khatri
Vishnu Narayan Mishra
Generalized B\'{e}zier curves based on Bernstein-Stancu-Chlodowsky type operators
Boletim da Sociedade Paranaense de Matemática
title Generalized B\'{e}zier curves based on Bernstein-Stancu-Chlodowsky type operators
title_full Generalized B\'{e}zier curves based on Bernstein-Stancu-Chlodowsky type operators
title_fullStr Generalized B\'{e}zier curves based on Bernstein-Stancu-Chlodowsky type operators
title_full_unstemmed Generalized B\'{e}zier curves based on Bernstein-Stancu-Chlodowsky type operators
title_short Generalized B\'{e}zier curves based on Bernstein-Stancu-Chlodowsky type operators
title_sort generalized b e zier curves based on bernstein stancu chlodowsky type operators
url https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/52003
work_keys_str_mv AT kejalkhatri generalizedbeziercurvesbasedonbernsteinstancuchlodowskytypeoperators
AT vishnunarayanmishra generalizedbeziercurvesbasedonbernsteinstancuchlodowskytypeoperators