Immunohistochemical detection of transgene expression in the brain using small epitope tags
<p>Abstract</p> <p>Background</p> <p><it>In vivo </it>overexpression of proteins is a powerful approach to study their biological function, generate disease models or evaluate gene therapy approaches. In order to investigate an exogenously expressed protein,...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2010-02-01
|
Series: | BMC Biotechnology |
Online Access: | http://www.biomedcentral.com/1472-6750/10/16 |
_version_ | 1828923174426771456 |
---|---|
author | Debyser Zeger Van den Haute Chris Gijsbers Rik Thiry Irina Paesen Kirsten Ibrahimi Abdelilah Reumers Veerle Lobbestael Evy Baekelandt Veerle Taymans Jean-Marc |
author_facet | Debyser Zeger Van den Haute Chris Gijsbers Rik Thiry Irina Paesen Kirsten Ibrahimi Abdelilah Reumers Veerle Lobbestael Evy Baekelandt Veerle Taymans Jean-Marc |
author_sort | Debyser Zeger |
collection | DOAJ |
description | <p>Abstract</p> <p>Background</p> <p><it>In vivo </it>overexpression of proteins is a powerful approach to study their biological function, generate disease models or evaluate gene therapy approaches. In order to investigate an exogenously expressed protein, specific and sensitive detection is essential. Unfortunately, antibodies that allow histological detection of the protein of interest are not always readily available. The use of an epitope tag fused to the protein can circumvent this problem as well as provide the possibility to discriminate endogenous from overexpressed proteins. In order to minimize impact on the bioactivity and biodistribution of the overexpressed protein, preference is given to small tags.</p> <p>Results</p> <p>In the present study, we evaluated several small epitope tags together with corresponding anti-tag antibodies for the detection of overexpressed proteins in rat brain, using eGFP as a reference. We generated several lentiviral vectors encoding eGFP with different N-terminally fused small epitope tags (AU1, flag, 3flag, HA, myc and V5). After confirmation of their functionality in cell culture, we injected these lentiviral vectors stereotactically into the striatum of rats and prepared paraformaldehyde fixed floating sections for immunohistochemical analysis. Using multiple antibodies and antibody dilutions per epitope tag, we extensively assessed the efficiency of several anti-tag antibodies for chromogenic immunohistochemical detection of the epitope tagged eGFPs by determining the proportion of immunoreactivity detected by anti-tag antibodies compared to anti-GFP antibody. Using fluorescence immunohistochemistry and confocal microscopy, we also quantified the proportion of eGFP-positive cells detected by anti-tag antibodies. Our results show that all the examined small epitope tags could be detected by anti-tag antibodies both in cell extracts as well as <it>in vivo</it>, although to varying degrees depending on the tag and antibody used. Using the presented protocol, V5/anti-V5 and HA/HA11 tag/antibody combinations provided the most sensitive detection in brain tissue. We confirmed the applicability of these optimized <it>in vivo </it>tag detection conditions for a difficult to detect protein, firefly luciferase (fLuc), using lentiviral vector constructs expressing V5 tagged and 3flag tagged fLuc protein.</p> <p>Conclusions</p> <p>We show here that several small epitope tags are useful for immunohistochemical detection of exogenous proteins <it>in vivo</it>. Our study also provides a generic methodology which is broadly applicable for the detection of overexpressed transgenes in mammalian brain tissue.</p> |
first_indexed | 2024-12-13T22:34:27Z |
format | Article |
id | doaj.art-a19e22dd53314ffd9ea861358e692c66 |
institution | Directory Open Access Journal |
issn | 1472-6750 |
language | English |
last_indexed | 2024-12-13T22:34:27Z |
publishDate | 2010-02-01 |
publisher | BMC |
record_format | Article |
series | BMC Biotechnology |
spelling | doaj.art-a19e22dd53314ffd9ea861358e692c662022-12-21T23:29:01ZengBMCBMC Biotechnology1472-67502010-02-011011610.1186/1472-6750-10-16Immunohistochemical detection of transgene expression in the brain using small epitope tagsDebyser ZegerVan den Haute ChrisGijsbers RikThiry IrinaPaesen KirstenIbrahimi AbdelilahReumers VeerleLobbestael EvyBaekelandt VeerleTaymans Jean-Marc<p>Abstract</p> <p>Background</p> <p><it>In vivo </it>overexpression of proteins is a powerful approach to study their biological function, generate disease models or evaluate gene therapy approaches. In order to investigate an exogenously expressed protein, specific and sensitive detection is essential. Unfortunately, antibodies that allow histological detection of the protein of interest are not always readily available. The use of an epitope tag fused to the protein can circumvent this problem as well as provide the possibility to discriminate endogenous from overexpressed proteins. In order to minimize impact on the bioactivity and biodistribution of the overexpressed protein, preference is given to small tags.</p> <p>Results</p> <p>In the present study, we evaluated several small epitope tags together with corresponding anti-tag antibodies for the detection of overexpressed proteins in rat brain, using eGFP as a reference. We generated several lentiviral vectors encoding eGFP with different N-terminally fused small epitope tags (AU1, flag, 3flag, HA, myc and V5). After confirmation of their functionality in cell culture, we injected these lentiviral vectors stereotactically into the striatum of rats and prepared paraformaldehyde fixed floating sections for immunohistochemical analysis. Using multiple antibodies and antibody dilutions per epitope tag, we extensively assessed the efficiency of several anti-tag antibodies for chromogenic immunohistochemical detection of the epitope tagged eGFPs by determining the proportion of immunoreactivity detected by anti-tag antibodies compared to anti-GFP antibody. Using fluorescence immunohistochemistry and confocal microscopy, we also quantified the proportion of eGFP-positive cells detected by anti-tag antibodies. Our results show that all the examined small epitope tags could be detected by anti-tag antibodies both in cell extracts as well as <it>in vivo</it>, although to varying degrees depending on the tag and antibody used. Using the presented protocol, V5/anti-V5 and HA/HA11 tag/antibody combinations provided the most sensitive detection in brain tissue. We confirmed the applicability of these optimized <it>in vivo </it>tag detection conditions for a difficult to detect protein, firefly luciferase (fLuc), using lentiviral vector constructs expressing V5 tagged and 3flag tagged fLuc protein.</p> <p>Conclusions</p> <p>We show here that several small epitope tags are useful for immunohistochemical detection of exogenous proteins <it>in vivo</it>. Our study also provides a generic methodology which is broadly applicable for the detection of overexpressed transgenes in mammalian brain tissue.</p>http://www.biomedcentral.com/1472-6750/10/16 |
spellingShingle | Debyser Zeger Van den Haute Chris Gijsbers Rik Thiry Irina Paesen Kirsten Ibrahimi Abdelilah Reumers Veerle Lobbestael Evy Baekelandt Veerle Taymans Jean-Marc Immunohistochemical detection of transgene expression in the brain using small epitope tags BMC Biotechnology |
title | Immunohistochemical detection of transgene expression in the brain using small epitope tags |
title_full | Immunohistochemical detection of transgene expression in the brain using small epitope tags |
title_fullStr | Immunohistochemical detection of transgene expression in the brain using small epitope tags |
title_full_unstemmed | Immunohistochemical detection of transgene expression in the brain using small epitope tags |
title_short | Immunohistochemical detection of transgene expression in the brain using small epitope tags |
title_sort | immunohistochemical detection of transgene expression in the brain using small epitope tags |
url | http://www.biomedcentral.com/1472-6750/10/16 |
work_keys_str_mv | AT debyserzeger immunohistochemicaldetectionoftransgeneexpressioninthebrainusingsmallepitopetags AT vandenhautechris immunohistochemicaldetectionoftransgeneexpressioninthebrainusingsmallepitopetags AT gijsbersrik immunohistochemicaldetectionoftransgeneexpressioninthebrainusingsmallepitopetags AT thiryirina immunohistochemicaldetectionoftransgeneexpressioninthebrainusingsmallepitopetags AT paesenkirsten immunohistochemicaldetectionoftransgeneexpressioninthebrainusingsmallepitopetags AT ibrahimiabdelilah immunohistochemicaldetectionoftransgeneexpressioninthebrainusingsmallepitopetags AT reumersveerle immunohistochemicaldetectionoftransgeneexpressioninthebrainusingsmallepitopetags AT lobbestaelevy immunohistochemicaldetectionoftransgeneexpressioninthebrainusingsmallepitopetags AT baekelandtveerle immunohistochemicaldetectionoftransgeneexpressioninthebrainusingsmallepitopetags AT taymansjeanmarc immunohistochemicaldetectionoftransgeneexpressioninthebrainusingsmallepitopetags |