Global existence of a radiative Euler system coupled to an electromagnetic field

We study the Cauchy problem for a system of equations corresponding to a singular limit of radiative hydrodynamics, namely, the 3D radiative compressible Euler system coupled to an electromagnetic field. Assuming smallness hypotheses for the data, we prove that the problem admits a unique global smo...

Full description

Bibliographic Details
Main Authors: Blanc Xavier, Ducomet Bernard, Nečasová Šárka
Format: Article
Language:English
Published: De Gruyter 2018-03-01
Series:Advances in Nonlinear Analysis
Subjects:
Online Access:https://doi.org/10.1515/anona-2017-0117
_version_ 1819293425095147520
author Blanc Xavier
Ducomet Bernard
Nečasová Šárka
author_facet Blanc Xavier
Ducomet Bernard
Nečasová Šárka
author_sort Blanc Xavier
collection DOAJ
description We study the Cauchy problem for a system of equations corresponding to a singular limit of radiative hydrodynamics, namely, the 3D radiative compressible Euler system coupled to an electromagnetic field. Assuming smallness hypotheses for the data, we prove that the problem admits a unique global smooth solution and study its asymptotics.
first_indexed 2024-12-24T04:10:13Z
format Article
id doaj.art-a19ee1dca7f541ef8c84edf065891c41
institution Directory Open Access Journal
issn 2191-9496
2191-950X
language English
last_indexed 2024-12-24T04:10:13Z
publishDate 2018-03-01
publisher De Gruyter
record_format Article
series Advances in Nonlinear Analysis
spelling doaj.art-a19ee1dca7f541ef8c84edf065891c412022-12-21T17:16:05ZengDe GruyterAdvances in Nonlinear Analysis2191-94962191-950X2018-03-01811158117010.1515/anona-2017-0117anona-2017-0117Global existence of a radiative Euler system coupled to an electromagnetic fieldBlanc Xavier0Ducomet Bernard1Nečasová Šárka2Laboratoire Jacques-Louis Lions, UMR 7598, UPMC, CNRS, Université Paris Diderot, Sorbonne Paris Cité, 75205Paris, FranceUniversité Paris-Est, LAMA (UMR 8050), UPEMLV, UPEC, CNRS, 61 avenue du Général de Gaulle, 94010 Créteil Cedex 10Paris, FranceInstitute of Mathematics of the Academy of Sciences of the Czech Republic, Žitná 25, 11567Praha1, Czech RepublicWe study the Cauchy problem for a system of equations corresponding to a singular limit of radiative hydrodynamics, namely, the 3D radiative compressible Euler system coupled to an electromagnetic field. Assuming smallness hypotheses for the data, we prove that the problem admits a unique global smooth solution and study its asymptotics.https://doi.org/10.1515/anona-2017-0117compressibleeulerradiation hydrodynamics35q30 76n10
spellingShingle Blanc Xavier
Ducomet Bernard
Nečasová Šárka
Global existence of a radiative Euler system coupled to an electromagnetic field
Advances in Nonlinear Analysis
compressible
euler
radiation hydrodynamics
35q30
76n10
title Global existence of a radiative Euler system coupled to an electromagnetic field
title_full Global existence of a radiative Euler system coupled to an electromagnetic field
title_fullStr Global existence of a radiative Euler system coupled to an electromagnetic field
title_full_unstemmed Global existence of a radiative Euler system coupled to an electromagnetic field
title_short Global existence of a radiative Euler system coupled to an electromagnetic field
title_sort global existence of a radiative euler system coupled to an electromagnetic field
topic compressible
euler
radiation hydrodynamics
35q30
76n10
url https://doi.org/10.1515/anona-2017-0117
work_keys_str_mv AT blancxavier globalexistenceofaradiativeeulersystemcoupledtoanelectromagneticfield
AT ducometbernard globalexistenceofaradiativeeulersystemcoupledtoanelectromagneticfield
AT necasovasarka globalexistenceofaradiativeeulersystemcoupledtoanelectromagneticfield