Global existence of a radiative Euler system coupled to an electromagnetic field
We study the Cauchy problem for a system of equations corresponding to a singular limit of radiative hydrodynamics, namely, the 3D radiative compressible Euler system coupled to an electromagnetic field. Assuming smallness hypotheses for the data, we prove that the problem admits a unique global smo...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2018-03-01
|
Series: | Advances in Nonlinear Analysis |
Subjects: | |
Online Access: | https://doi.org/10.1515/anona-2017-0117 |
_version_ | 1819293425095147520 |
---|---|
author | Blanc Xavier Ducomet Bernard Nečasová Šárka |
author_facet | Blanc Xavier Ducomet Bernard Nečasová Šárka |
author_sort | Blanc Xavier |
collection | DOAJ |
description | We study the Cauchy problem for a system of equations corresponding to a singular limit of radiative hydrodynamics, namely, the 3D radiative compressible Euler system coupled to an electromagnetic field.
Assuming smallness hypotheses for the data, we prove that the problem admits a unique global smooth solution and study its asymptotics. |
first_indexed | 2024-12-24T04:10:13Z |
format | Article |
id | doaj.art-a19ee1dca7f541ef8c84edf065891c41 |
institution | Directory Open Access Journal |
issn | 2191-9496 2191-950X |
language | English |
last_indexed | 2024-12-24T04:10:13Z |
publishDate | 2018-03-01 |
publisher | De Gruyter |
record_format | Article |
series | Advances in Nonlinear Analysis |
spelling | doaj.art-a19ee1dca7f541ef8c84edf065891c412022-12-21T17:16:05ZengDe GruyterAdvances in Nonlinear Analysis2191-94962191-950X2018-03-01811158117010.1515/anona-2017-0117anona-2017-0117Global existence of a radiative Euler system coupled to an electromagnetic fieldBlanc Xavier0Ducomet Bernard1Nečasová Šárka2Laboratoire Jacques-Louis Lions, UMR 7598, UPMC, CNRS, Université Paris Diderot, Sorbonne Paris Cité, 75205Paris, FranceUniversité Paris-Est, LAMA (UMR 8050), UPEMLV, UPEC, CNRS, 61 avenue du Général de Gaulle, 94010 Créteil Cedex 10Paris, FranceInstitute of Mathematics of the Academy of Sciences of the Czech Republic, Žitná 25, 11567Praha1, Czech RepublicWe study the Cauchy problem for a system of equations corresponding to a singular limit of radiative hydrodynamics, namely, the 3D radiative compressible Euler system coupled to an electromagnetic field. Assuming smallness hypotheses for the data, we prove that the problem admits a unique global smooth solution and study its asymptotics.https://doi.org/10.1515/anona-2017-0117compressibleeulerradiation hydrodynamics35q30 76n10 |
spellingShingle | Blanc Xavier Ducomet Bernard Nečasová Šárka Global existence of a radiative Euler system coupled to an electromagnetic field Advances in Nonlinear Analysis compressible euler radiation hydrodynamics 35q30 76n10 |
title | Global existence of a radiative Euler system coupled to an electromagnetic field |
title_full | Global existence of a radiative Euler system coupled to an electromagnetic field |
title_fullStr | Global existence of a radiative Euler system coupled to an electromagnetic field |
title_full_unstemmed | Global existence of a radiative Euler system coupled to an electromagnetic field |
title_short | Global existence of a radiative Euler system coupled to an electromagnetic field |
title_sort | global existence of a radiative euler system coupled to an electromagnetic field |
topic | compressible euler radiation hydrodynamics 35q30 76n10 |
url | https://doi.org/10.1515/anona-2017-0117 |
work_keys_str_mv | AT blancxavier globalexistenceofaradiativeeulersystemcoupledtoanelectromagneticfield AT ducometbernard globalexistenceofaradiativeeulersystemcoupledtoanelectromagneticfield AT necasovasarka globalexistenceofaradiativeeulersystemcoupledtoanelectromagneticfield |