Computed Tomography-Based Assessment of Transvalvular Pressure Gradient in Aortic Stenosis
Background: In patients with aortic stenosis, computed tomography (CT) provides important information about cardiovascular anatomy for treatment planning but is limited in determining relevant hemodynamic parameters such as the transvalvular pressure gradient (TPG).Purpose: In the present study, we...
Main Authors: | , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2021-09-01
|
Series: | Frontiers in Cardiovascular Medicine |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fcvm.2021.706628/full |
_version_ | 1818648043222728704 |
---|---|
author | Benedikt Franke Jan Brüning Pavlo Yevtushenko Henryk Dreger Henryk Dreger Anna Brand Anna Brand Benjamin Juri Axel Unbehaun Axel Unbehaun Jörg Kempfert Simon Sündermann Simon Sündermann Alexander Lembcke Natalia Solowjowa Sebastian Kelle Volkmar Falk Titus Kuehne Titus Kuehne Titus Kuehne Leonid Goubergrits Leonid Goubergrits Marie Schafstedde Marie Schafstedde Marie Schafstedde Marie Schafstedde |
author_facet | Benedikt Franke Jan Brüning Pavlo Yevtushenko Henryk Dreger Henryk Dreger Anna Brand Anna Brand Benjamin Juri Axel Unbehaun Axel Unbehaun Jörg Kempfert Simon Sündermann Simon Sündermann Alexander Lembcke Natalia Solowjowa Sebastian Kelle Volkmar Falk Titus Kuehne Titus Kuehne Titus Kuehne Leonid Goubergrits Leonid Goubergrits Marie Schafstedde Marie Schafstedde Marie Schafstedde Marie Schafstedde |
author_sort | Benedikt Franke |
collection | DOAJ |
description | Background: In patients with aortic stenosis, computed tomography (CT) provides important information about cardiovascular anatomy for treatment planning but is limited in determining relevant hemodynamic parameters such as the transvalvular pressure gradient (TPG).Purpose: In the present study, we aimed to validate a reduced-order model method for assessing TPG in aortic stenosis using CT data.Methods: TPGCT was calculated using a reduced-order model requiring the patient-specific peak-systolic aortic flow rate (Q) and the aortic valve area (AVA). AVA was determined by segmentation of the aortic valve leaflets, whereas Q was quantified based on volumetric assessment of the left ventricle. For validation, invasively measured TPGcatheter was calculated from pressure measurements in the left ventricle and the ascending aorta. Altogether, 84 data sets of patients with aortic stenosis were used to compare TPGCT against TPGcatheter.Results: TPGcatheter and TPGCT were 50.6 ± 28.0 and 48.0 ± 26 mmHg, respectively (p = 0.56). A Bland–Altman analysis revealed good agreement between both methods with a mean difference in TPG of 2.6 mmHg and a standard deviation of 19.3 mmHg. Both methods showed good correlation with r = 0.72 (p < 0.001).Conclusions: The presented CT-based method allows assessment of TPG in patients with aortic stenosis, extending the current capabilities of cardiac CT for diagnosis and treatment planning. |
first_indexed | 2024-12-17T01:12:09Z |
format | Article |
id | doaj.art-a1a1c32868294bf186c861f3f1b074d2 |
institution | Directory Open Access Journal |
issn | 2297-055X |
language | English |
last_indexed | 2024-12-17T01:12:09Z |
publishDate | 2021-09-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Cardiovascular Medicine |
spelling | doaj.art-a1a1c32868294bf186c861f3f1b074d22022-12-21T22:09:07ZengFrontiers Media S.A.Frontiers in Cardiovascular Medicine2297-055X2021-09-01810.3389/fcvm.2021.706628706628Computed Tomography-Based Assessment of Transvalvular Pressure Gradient in Aortic StenosisBenedikt Franke0Jan Brüning1Pavlo Yevtushenko2Henryk Dreger3Henryk Dreger4Anna Brand5Anna Brand6Benjamin Juri7Axel Unbehaun8Axel Unbehaun9Jörg Kempfert10Simon Sündermann11Simon Sündermann12Alexander Lembcke13Natalia Solowjowa14Sebastian Kelle15Volkmar Falk16Titus Kuehne17Titus Kuehne18Titus Kuehne19Leonid Goubergrits20Leonid Goubergrits21Marie Schafstedde22Marie Schafstedde23Marie Schafstedde24Marie Schafstedde25Institute of Computer-assisted Cardiovascular Medicine, Charité – Universitätsmedizin Berlin, Berlin, GermanyInstitute of Computer-assisted Cardiovascular Medicine, Charité – Universitätsmedizin Berlin, Berlin, GermanyInstitute of Computer-assisted Cardiovascular Medicine, Charité – Universitätsmedizin Berlin, Berlin, GermanyDZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, GermanyDepartment of Cardiology and Angiology, Charité – Universitätsmedizin Berlin, Berlin, GermanyDZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, GermanyDepartment of Cardiology and Angiology, Charité – Universitätsmedizin Berlin, Berlin, GermanyDepartment of Cardiology and Angiology, Charité – Universitätsmedizin Berlin, Berlin, GermanyDZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, GermanyDepartment of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, GermanyDepartment of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, GermanyDepartment of Cardiology and Angiology, Charité – Universitätsmedizin Berlin, Berlin, GermanyDepartment of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, GermanyDepartment of Radiology, Charité – Universitätsmedizin Berlin, Berlin, GermanyDepartment of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, GermanyDepartment of Cardiology, German Heart Center Berlin, Berlin, GermanyDepartment of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, GermanyInstitute of Computer-assisted Cardiovascular Medicine, Charité – Universitätsmedizin Berlin, Berlin, GermanyDZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, GermanyDepartment of Congenital Heart Disease, German Heart Center Berlin, Berlin, GermanyInstitute of Computer-assisted Cardiovascular Medicine, Charité – Universitätsmedizin Berlin, Berlin, GermanyEinstein Center Digital Future, Berlin, GermanyInstitute of Computer-assisted Cardiovascular Medicine, Charité – Universitätsmedizin Berlin, Berlin, GermanyDZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, GermanyDepartment of Congenital Heart Disease, German Heart Center Berlin, Berlin, GermanyBerlin Institute of Health (BIH), Charité – Universitätsmedizin Berlin, Berlin, GermanyBackground: In patients with aortic stenosis, computed tomography (CT) provides important information about cardiovascular anatomy for treatment planning but is limited in determining relevant hemodynamic parameters such as the transvalvular pressure gradient (TPG).Purpose: In the present study, we aimed to validate a reduced-order model method for assessing TPG in aortic stenosis using CT data.Methods: TPGCT was calculated using a reduced-order model requiring the patient-specific peak-systolic aortic flow rate (Q) and the aortic valve area (AVA). AVA was determined by segmentation of the aortic valve leaflets, whereas Q was quantified based on volumetric assessment of the left ventricle. For validation, invasively measured TPGcatheter was calculated from pressure measurements in the left ventricle and the ascending aorta. Altogether, 84 data sets of patients with aortic stenosis were used to compare TPGCT against TPGcatheter.Results: TPGcatheter and TPGCT were 50.6 ± 28.0 and 48.0 ± 26 mmHg, respectively (p = 0.56). A Bland–Altman analysis revealed good agreement between both methods with a mean difference in TPG of 2.6 mmHg and a standard deviation of 19.3 mmHg. Both methods showed good correlation with r = 0.72 (p < 0.001).Conclusions: The presented CT-based method allows assessment of TPG in patients with aortic stenosis, extending the current capabilities of cardiac CT for diagnosis and treatment planning.https://www.frontiersin.org/articles/10.3389/fcvm.2021.706628/fullcardiac computed tomographyaortic stenosistransvalvular pressure gradientimage-based modelingreduced order model |
spellingShingle | Benedikt Franke Jan Brüning Pavlo Yevtushenko Henryk Dreger Henryk Dreger Anna Brand Anna Brand Benjamin Juri Axel Unbehaun Axel Unbehaun Jörg Kempfert Simon Sündermann Simon Sündermann Alexander Lembcke Natalia Solowjowa Sebastian Kelle Volkmar Falk Titus Kuehne Titus Kuehne Titus Kuehne Leonid Goubergrits Leonid Goubergrits Marie Schafstedde Marie Schafstedde Marie Schafstedde Marie Schafstedde Computed Tomography-Based Assessment of Transvalvular Pressure Gradient in Aortic Stenosis Frontiers in Cardiovascular Medicine cardiac computed tomography aortic stenosis transvalvular pressure gradient image-based modeling reduced order model |
title | Computed Tomography-Based Assessment of Transvalvular Pressure Gradient in Aortic Stenosis |
title_full | Computed Tomography-Based Assessment of Transvalvular Pressure Gradient in Aortic Stenosis |
title_fullStr | Computed Tomography-Based Assessment of Transvalvular Pressure Gradient in Aortic Stenosis |
title_full_unstemmed | Computed Tomography-Based Assessment of Transvalvular Pressure Gradient in Aortic Stenosis |
title_short | Computed Tomography-Based Assessment of Transvalvular Pressure Gradient in Aortic Stenosis |
title_sort | computed tomography based assessment of transvalvular pressure gradient in aortic stenosis |
topic | cardiac computed tomography aortic stenosis transvalvular pressure gradient image-based modeling reduced order model |
url | https://www.frontiersin.org/articles/10.3389/fcvm.2021.706628/full |
work_keys_str_mv | AT benediktfranke computedtomographybasedassessmentoftransvalvularpressuregradientinaorticstenosis AT janbruning computedtomographybasedassessmentoftransvalvularpressuregradientinaorticstenosis AT pavloyevtushenko computedtomographybasedassessmentoftransvalvularpressuregradientinaorticstenosis AT henrykdreger computedtomographybasedassessmentoftransvalvularpressuregradientinaorticstenosis AT henrykdreger computedtomographybasedassessmentoftransvalvularpressuregradientinaorticstenosis AT annabrand computedtomographybasedassessmentoftransvalvularpressuregradientinaorticstenosis AT annabrand computedtomographybasedassessmentoftransvalvularpressuregradientinaorticstenosis AT benjaminjuri computedtomographybasedassessmentoftransvalvularpressuregradientinaorticstenosis AT axelunbehaun computedtomographybasedassessmentoftransvalvularpressuregradientinaorticstenosis AT axelunbehaun computedtomographybasedassessmentoftransvalvularpressuregradientinaorticstenosis AT jorgkempfert computedtomographybasedassessmentoftransvalvularpressuregradientinaorticstenosis AT simonsundermann computedtomographybasedassessmentoftransvalvularpressuregradientinaorticstenosis AT simonsundermann computedtomographybasedassessmentoftransvalvularpressuregradientinaorticstenosis AT alexanderlembcke computedtomographybasedassessmentoftransvalvularpressuregradientinaorticstenosis AT nataliasolowjowa computedtomographybasedassessmentoftransvalvularpressuregradientinaorticstenosis AT sebastiankelle computedtomographybasedassessmentoftransvalvularpressuregradientinaorticstenosis AT volkmarfalk computedtomographybasedassessmentoftransvalvularpressuregradientinaorticstenosis AT tituskuehne computedtomographybasedassessmentoftransvalvularpressuregradientinaorticstenosis AT tituskuehne computedtomographybasedassessmentoftransvalvularpressuregradientinaorticstenosis AT tituskuehne computedtomographybasedassessmentoftransvalvularpressuregradientinaorticstenosis AT leonidgoubergrits computedtomographybasedassessmentoftransvalvularpressuregradientinaorticstenosis AT leonidgoubergrits computedtomographybasedassessmentoftransvalvularpressuregradientinaorticstenosis AT marieschafstedde computedtomographybasedassessmentoftransvalvularpressuregradientinaorticstenosis AT marieschafstedde computedtomographybasedassessmentoftransvalvularpressuregradientinaorticstenosis AT marieschafstedde computedtomographybasedassessmentoftransvalvularpressuregradientinaorticstenosis AT marieschafstedde computedtomographybasedassessmentoftransvalvularpressuregradientinaorticstenosis |