Ranking Authors in an Academic Network Using Social Network Measures

Online social networks are widely used platforms that enable people to connect with each other. These social media channels provide an active communication platform for people, and they have opened new venues of research for the academic world and business. One of these research areas is measuring t...

Full description

Bibliographic Details
Main Authors: Fizza Bibi, Hikmat Ullah Khan, Tassawar Iqbal, Muhammad Farooq, Irfan Mehmood, Yunyoung Nam
Format: Article
Language:English
Published: MDPI AG 2018-10-01
Series:Applied Sciences
Subjects:
Online Access:http://www.mdpi.com/2076-3417/8/10/1824
Description
Summary:Online social networks are widely used platforms that enable people to connect with each other. These social media channels provide an active communication platform for people, and they have opened new venues of research for the academic world and business. One of these research areas is measuring the influential users in online social networks; and the same is true for academic networks where finding influential authors is an area of interest. In an academic network, citation count, h-index and their variations are used to find top authors. In this article, we propose the adoption of established social network measures, including centrality and prestige, in an academic network to compute the rank of authors. For the empirical analysis, the widely-used dataset of the Digital Bibliography and Library Project (DBLP) is exploited in this research, and the micro-level properties of the network formed in the DBLP co-authorship network are studied. Afterwards, the results are computed using social network measures and evaluated using the standard ranking performance evaluation measures, including Kendall correlation, Overlapping Similarlity (OSim) and Spearman rank-order correlation. The results reveal that the centrality measures are significantly correlated with the citation count and h-index. Consequently, social network measures have potential to be used in an academic network to rank the authors.
ISSN:2076-3417