Total Coloring of Dumbbell Maximal Planar Graphs

The Total Coloring Conjecture (TCC) states that every simple graph <i>G</i> is totally <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mo>Δ</mo><mo>+<...

Full description

Bibliographic Details
Main Authors: Yangyang Zhou, Dongyang Zhao, Mingyuan Ma, Jin Xu
Format: Article
Language:English
Published: MDPI AG 2022-03-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/6/912
_version_ 1797445416502951936
author Yangyang Zhou
Dongyang Zhao
Mingyuan Ma
Jin Xu
author_facet Yangyang Zhou
Dongyang Zhao
Mingyuan Ma
Jin Xu
author_sort Yangyang Zhou
collection DOAJ
description The Total Coloring Conjecture (TCC) states that every simple graph <i>G</i> is totally <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mo>Δ</mo><mo>+</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>-colorable, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Δ</mo></semantics></math></inline-formula> denotes the maximum degree of <i>G</i>. In this paper, we prove that TCC holds for dumbbell maximal planar graphs. Especially, we divide the dumbbell maximal planar graphs into three categories according to the maximum degree: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>J</mi><mn>9</mn></msub></semantics></math></inline-formula>, I-dumbbell maximal planar graphs and II-dumbbell maximal planar graphs. We give the necessary and sufficient condition for I-dumbbell maximal planar graphs, and prove that any I-dumbbell maximal planar graph is totally 8-colorable. Moreover, a linear time algorithm is proposed to compute a total <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mo>Δ</mo><mo>+</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>-coloring for any I-dumbbell maximal planar graph.
first_indexed 2024-03-09T13:26:30Z
format Article
id doaj.art-a1cc2b90c1b246bbad1f74a760d8f5a7
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T13:26:30Z
publishDate 2022-03-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-a1cc2b90c1b246bbad1f74a760d8f5a72023-11-30T21:23:56ZengMDPI AGMathematics2227-73902022-03-0110691210.3390/math10060912Total Coloring of Dumbbell Maximal Planar GraphsYangyang Zhou0Dongyang Zhao1Mingyuan Ma2Jin Xu3School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, ChinaSchool of Electronics Engineering and Computer Science, Peking University, Beijing 100871, ChinaSchool of Electronics Engineering and Computer Science, Peking University, Beijing 100871, ChinaSchool of Electronics Engineering and Computer Science, Peking University, Beijing 100871, ChinaThe Total Coloring Conjecture (TCC) states that every simple graph <i>G</i> is totally <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mo>Δ</mo><mo>+</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>-colorable, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Δ</mo></semantics></math></inline-formula> denotes the maximum degree of <i>G</i>. In this paper, we prove that TCC holds for dumbbell maximal planar graphs. Especially, we divide the dumbbell maximal planar graphs into three categories according to the maximum degree: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>J</mi><mn>9</mn></msub></semantics></math></inline-formula>, I-dumbbell maximal planar graphs and II-dumbbell maximal planar graphs. We give the necessary and sufficient condition for I-dumbbell maximal planar graphs, and prove that any I-dumbbell maximal planar graph is totally 8-colorable. Moreover, a linear time algorithm is proposed to compute a total <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mo>Δ</mo><mo>+</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>-coloring for any I-dumbbell maximal planar graph.https://www.mdpi.com/2227-7390/10/6/912total coloringdumbbell maximal planar graphsI-dumbbell maximal planar graphsdumbbell transformationtotal coloring algorithm
spellingShingle Yangyang Zhou
Dongyang Zhao
Mingyuan Ma
Jin Xu
Total Coloring of Dumbbell Maximal Planar Graphs
Mathematics
total coloring
dumbbell maximal planar graphs
I-dumbbell maximal planar graphs
dumbbell transformation
total coloring algorithm
title Total Coloring of Dumbbell Maximal Planar Graphs
title_full Total Coloring of Dumbbell Maximal Planar Graphs
title_fullStr Total Coloring of Dumbbell Maximal Planar Graphs
title_full_unstemmed Total Coloring of Dumbbell Maximal Planar Graphs
title_short Total Coloring of Dumbbell Maximal Planar Graphs
title_sort total coloring of dumbbell maximal planar graphs
topic total coloring
dumbbell maximal planar graphs
I-dumbbell maximal planar graphs
dumbbell transformation
total coloring algorithm
url https://www.mdpi.com/2227-7390/10/6/912
work_keys_str_mv AT yangyangzhou totalcoloringofdumbbellmaximalplanargraphs
AT dongyangzhao totalcoloringofdumbbellmaximalplanargraphs
AT mingyuanma totalcoloringofdumbbellmaximalplanargraphs
AT jinxu totalcoloringofdumbbellmaximalplanargraphs