A deep learning model to generate synthetic CT for prostate MR-only radiotherapy dose planning: a multicenter study

IntroductionFor radiotherapy based solely on magnetic resonance imaging (MRI), generating synthetic computed tomography scans (sCT) from MRI is essential for dose calculation. The use of deep learning (DL) methods to generate sCT from MRI has shown encouraging results if the MRI images used for trai...

Full description

Bibliographic Details
Main Authors: Safaa Tahri, Blanche Texier, Jean-Claude Nunes, Cédric Hemon, Pauline Lekieffre, Emma Collot, Hilda Chourak, Jennifer Le Guevelou, Peter Greer, Jason Dowling, Oscar Acosta, Igor Bessieres, Louis Marage, Adrien Boue-Rafle, Renaud De Crevoisier, Caroline Lafond, Anaïs Barateau
Format: Article
Language:English
Published: Frontiers Media S.A. 2023-11-01
Series:Frontiers in Oncology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fonc.2023.1279750/full
_version_ 1827631583326109696
author Safaa Tahri
Blanche Texier
Jean-Claude Nunes
Cédric Hemon
Pauline Lekieffre
Emma Collot
Hilda Chourak
Hilda Chourak
Jennifer Le Guevelou
Peter Greer
Peter Greer
Jason Dowling
Oscar Acosta
Igor Bessieres
Louis Marage
Adrien Boue-Rafle
Renaud De Crevoisier
Caroline Lafond
Anaïs Barateau
author_facet Safaa Tahri
Blanche Texier
Jean-Claude Nunes
Cédric Hemon
Pauline Lekieffre
Emma Collot
Hilda Chourak
Hilda Chourak
Jennifer Le Guevelou
Peter Greer
Peter Greer
Jason Dowling
Oscar Acosta
Igor Bessieres
Louis Marage
Adrien Boue-Rafle
Renaud De Crevoisier
Caroline Lafond
Anaïs Barateau
author_sort Safaa Tahri
collection DOAJ
description IntroductionFor radiotherapy based solely on magnetic resonance imaging (MRI), generating synthetic computed tomography scans (sCT) from MRI is essential for dose calculation. The use of deep learning (DL) methods to generate sCT from MRI has shown encouraging results if the MRI images used for training the deep learning network and the MRI images for sCT generation come from the same MRI device. The objective of this study was to create and evaluate a generic DL model capable of generating sCTs from various MRI devices for prostate radiotherapyMaterials and methodsIn total, 90 patients from three centers (30 CT-MR prostate pairs/center) underwent treatment using volumetric modulated arc therapy for prostate cancer (PCa) (60 Gy in 20 fractions). T2 MRI images were acquired in addition to computed tomography (CT) images for treatment planning. The DL model was a 2D supervised conditional generative adversarial network (Pix2Pix). Patient images underwent preprocessing steps, including nonrigid registration. Seven different supervised models were trained, incorporating patients from one, two, or three centers. Each model was trained on 24 CT-MR prostate pairs. A generic model was trained using patients from all three centers. To compare sCT and CT, the mean absolute error in Hounsfield units was calculated for the entire pelvis, prostate, bladder, rectum, and bones. For dose analysis, mean dose differences of D99% for CTV, V95% for PTV, Dmax for rectum and bladder, and 3D gamma analysis (local, 1%/1 mm) were calculated from CT and sCT. Furthermore, Wilcoxon tests were performed to compare the image and dose results obtained with the generic model to those with the other trained models.ResultsConsidering the image results for the entire pelvis, when the data used for the test comes from the same center as the data used for training, the results were not significantly different from the generic model. Absolute dose differences were less than 1 Gy for the CTV D99% for every trained model and center. The gamma analysis results showed nonsignificant differences between the generic and monocentric models.ConclusionThe accuracy of sCT, in terms of image and dose, is equivalent to whether MRI images are generated using the generic model or the monocentric model. The generic model, using only eight MRI-CT pairs per center, offers robust sCT generation, facilitating PCa MRI-only radiotherapy for routine clinical use.
first_indexed 2024-03-09T14:23:49Z
format Article
id doaj.art-a1d51ded1429495bb38f6ed943c64561
institution Directory Open Access Journal
issn 2234-943X
language English
last_indexed 2024-03-09T14:23:49Z
publishDate 2023-11-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Oncology
spelling doaj.art-a1d51ded1429495bb38f6ed943c645612023-11-28T08:32:17ZengFrontiers Media S.A.Frontiers in Oncology2234-943X2023-11-011310.3389/fonc.2023.12797501279750A deep learning model to generate synthetic CT for prostate MR-only radiotherapy dose planning: a multicenter studySafaa Tahri0Blanche Texier1Jean-Claude Nunes2Cédric Hemon3Pauline Lekieffre4Emma Collot5Hilda Chourak6Hilda Chourak7Jennifer Le Guevelou8Peter Greer9Peter Greer10Jason Dowling11Oscar Acosta12Igor Bessieres13Louis Marage14Adrien Boue-Rafle15Renaud De Crevoisier16Caroline Lafond17Anaïs Barateau18University of Rennes, Centre de Lutte contre le Cancer (CLCC) Eugène Marquis, INSERM Laboratoire Traitement du Signal et de l'Image (LTSI) - Unité Mixte de Recherche (UMR) 1099, Rennes, FranceUniversity of Rennes, Centre de Lutte contre le Cancer (CLCC) Eugène Marquis, INSERM Laboratoire Traitement du Signal et de l'Image (LTSI) - Unité Mixte de Recherche (UMR) 1099, Rennes, FranceUniversity of Rennes, Centre de Lutte contre le Cancer (CLCC) Eugène Marquis, INSERM Laboratoire Traitement du Signal et de l'Image (LTSI) - Unité Mixte de Recherche (UMR) 1099, Rennes, FranceUniversity of Rennes, Centre de Lutte contre le Cancer (CLCC) Eugène Marquis, INSERM Laboratoire Traitement du Signal et de l'Image (LTSI) - Unité Mixte de Recherche (UMR) 1099, Rennes, FranceUniversity of Rennes, Centre de Lutte contre le Cancer (CLCC) Eugène Marquis, INSERM Laboratoire Traitement du Signal et de l'Image (LTSI) - Unité Mixte de Recherche (UMR) 1099, Rennes, FranceUniversity of Rennes, Centre de Lutte contre le Cancer (CLCC) Eugène Marquis, INSERM Laboratoire Traitement du Signal et de l'Image (LTSI) - Unité Mixte de Recherche (UMR) 1099, Rennes, FranceUniversity of Rennes, Centre de Lutte contre le Cancer (CLCC) Eugène Marquis, INSERM Laboratoire Traitement du Signal et de l'Image (LTSI) - Unité Mixte de Recherche (UMR) 1099, Rennes, FranceThe Australian eHealth Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Health and Biosecurity, Brisbane, QLD, AustraliaUniversity of Rennes, Centre de Lutte contre le Cancer (CLCC) Eugène Marquis, INSERM Laboratoire Traitement du Signal et de l'Image (LTSI) - Unité Mixte de Recherche (UMR) 1099, Rennes, FranceSchool of Mathematical and Physical Sciences, University of Newcastle, Newcastle, NSW, AustraliaRadiation Oncology, Calvary Mater Newcastle Hospital, Newcastle, NSW, AustraliaThe Australian eHealth Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Health and Biosecurity, Brisbane, QLD, AustraliaUniversity of Rennes, Centre de Lutte contre le Cancer (CLCC) Eugène Marquis, INSERM Laboratoire Traitement du Signal et de l'Image (LTSI) - Unité Mixte de Recherche (UMR) 1099, Rennes, FranceCentre Georges François Leclerc, Dijon, FranceCentre Georges François Leclerc, Dijon, FranceUniversity of Rennes, Centre de Lutte contre le Cancer (CLCC) Eugène Marquis, INSERM Laboratoire Traitement du Signal et de l'Image (LTSI) - Unité Mixte de Recherche (UMR) 1099, Rennes, FranceUniversity of Rennes, Centre de Lutte contre le Cancer (CLCC) Eugène Marquis, INSERM Laboratoire Traitement du Signal et de l'Image (LTSI) - Unité Mixte de Recherche (UMR) 1099, Rennes, FranceUniversity of Rennes, Centre de Lutte contre le Cancer (CLCC) Eugène Marquis, INSERM Laboratoire Traitement du Signal et de l'Image (LTSI) - Unité Mixte de Recherche (UMR) 1099, Rennes, FranceUniversity of Rennes, Centre de Lutte contre le Cancer (CLCC) Eugène Marquis, INSERM Laboratoire Traitement du Signal et de l'Image (LTSI) - Unité Mixte de Recherche (UMR) 1099, Rennes, FranceIntroductionFor radiotherapy based solely on magnetic resonance imaging (MRI), generating synthetic computed tomography scans (sCT) from MRI is essential for dose calculation. The use of deep learning (DL) methods to generate sCT from MRI has shown encouraging results if the MRI images used for training the deep learning network and the MRI images for sCT generation come from the same MRI device. The objective of this study was to create and evaluate a generic DL model capable of generating sCTs from various MRI devices for prostate radiotherapyMaterials and methodsIn total, 90 patients from three centers (30 CT-MR prostate pairs/center) underwent treatment using volumetric modulated arc therapy for prostate cancer (PCa) (60 Gy in 20 fractions). T2 MRI images were acquired in addition to computed tomography (CT) images for treatment planning. The DL model was a 2D supervised conditional generative adversarial network (Pix2Pix). Patient images underwent preprocessing steps, including nonrigid registration. Seven different supervised models were trained, incorporating patients from one, two, or three centers. Each model was trained on 24 CT-MR prostate pairs. A generic model was trained using patients from all three centers. To compare sCT and CT, the mean absolute error in Hounsfield units was calculated for the entire pelvis, prostate, bladder, rectum, and bones. For dose analysis, mean dose differences of D99% for CTV, V95% for PTV, Dmax for rectum and bladder, and 3D gamma analysis (local, 1%/1 mm) were calculated from CT and sCT. Furthermore, Wilcoxon tests were performed to compare the image and dose results obtained with the generic model to those with the other trained models.ResultsConsidering the image results for the entire pelvis, when the data used for the test comes from the same center as the data used for training, the results were not significantly different from the generic model. Absolute dose differences were less than 1 Gy for the CTV D99% for every trained model and center. The gamma analysis results showed nonsignificant differences between the generic and monocentric models.ConclusionThe accuracy of sCT, in terms of image and dose, is equivalent to whether MRI images are generated using the generic model or the monocentric model. The generic model, using only eight MRI-CT pairs per center, offers robust sCT generation, facilitating PCa MRI-only radiotherapy for routine clinical use.https://www.frontiersin.org/articles/10.3389/fonc.2023.1279750/fullMR-only radiotherapydose planningMRIdeep learningCT synthesis
spellingShingle Safaa Tahri
Blanche Texier
Jean-Claude Nunes
Cédric Hemon
Pauline Lekieffre
Emma Collot
Hilda Chourak
Hilda Chourak
Jennifer Le Guevelou
Peter Greer
Peter Greer
Jason Dowling
Oscar Acosta
Igor Bessieres
Louis Marage
Adrien Boue-Rafle
Renaud De Crevoisier
Caroline Lafond
Anaïs Barateau
A deep learning model to generate synthetic CT for prostate MR-only radiotherapy dose planning: a multicenter study
Frontiers in Oncology
MR-only radiotherapy
dose planning
MRI
deep learning
CT synthesis
title A deep learning model to generate synthetic CT for prostate MR-only radiotherapy dose planning: a multicenter study
title_full A deep learning model to generate synthetic CT for prostate MR-only radiotherapy dose planning: a multicenter study
title_fullStr A deep learning model to generate synthetic CT for prostate MR-only radiotherapy dose planning: a multicenter study
title_full_unstemmed A deep learning model to generate synthetic CT for prostate MR-only radiotherapy dose planning: a multicenter study
title_short A deep learning model to generate synthetic CT for prostate MR-only radiotherapy dose planning: a multicenter study
title_sort deep learning model to generate synthetic ct for prostate mr only radiotherapy dose planning a multicenter study
topic MR-only radiotherapy
dose planning
MRI
deep learning
CT synthesis
url https://www.frontiersin.org/articles/10.3389/fonc.2023.1279750/full
work_keys_str_mv AT safaatahri adeeplearningmodeltogeneratesyntheticctforprostatemronlyradiotherapydoseplanningamulticenterstudy
AT blanchetexier adeeplearningmodeltogeneratesyntheticctforprostatemronlyradiotherapydoseplanningamulticenterstudy
AT jeanclaudenunes adeeplearningmodeltogeneratesyntheticctforprostatemronlyradiotherapydoseplanningamulticenterstudy
AT cedrichemon adeeplearningmodeltogeneratesyntheticctforprostatemronlyradiotherapydoseplanningamulticenterstudy
AT paulinelekieffre adeeplearningmodeltogeneratesyntheticctforprostatemronlyradiotherapydoseplanningamulticenterstudy
AT emmacollot adeeplearningmodeltogeneratesyntheticctforprostatemronlyradiotherapydoseplanningamulticenterstudy
AT hildachourak adeeplearningmodeltogeneratesyntheticctforprostatemronlyradiotherapydoseplanningamulticenterstudy
AT hildachourak adeeplearningmodeltogeneratesyntheticctforprostatemronlyradiotherapydoseplanningamulticenterstudy
AT jenniferleguevelou adeeplearningmodeltogeneratesyntheticctforprostatemronlyradiotherapydoseplanningamulticenterstudy
AT petergreer adeeplearningmodeltogeneratesyntheticctforprostatemronlyradiotherapydoseplanningamulticenterstudy
AT petergreer adeeplearningmodeltogeneratesyntheticctforprostatemronlyradiotherapydoseplanningamulticenterstudy
AT jasondowling adeeplearningmodeltogeneratesyntheticctforprostatemronlyradiotherapydoseplanningamulticenterstudy
AT oscaracosta adeeplearningmodeltogeneratesyntheticctforprostatemronlyradiotherapydoseplanningamulticenterstudy
AT igorbessieres adeeplearningmodeltogeneratesyntheticctforprostatemronlyradiotherapydoseplanningamulticenterstudy
AT louismarage adeeplearningmodeltogeneratesyntheticctforprostatemronlyradiotherapydoseplanningamulticenterstudy
AT adrienbouerafle adeeplearningmodeltogeneratesyntheticctforprostatemronlyradiotherapydoseplanningamulticenterstudy
AT renauddecrevoisier adeeplearningmodeltogeneratesyntheticctforprostatemronlyradiotherapydoseplanningamulticenterstudy
AT carolinelafond adeeplearningmodeltogeneratesyntheticctforprostatemronlyradiotherapydoseplanningamulticenterstudy
AT anaisbarateau adeeplearningmodeltogeneratesyntheticctforprostatemronlyradiotherapydoseplanningamulticenterstudy
AT safaatahri deeplearningmodeltogeneratesyntheticctforprostatemronlyradiotherapydoseplanningamulticenterstudy
AT blanchetexier deeplearningmodeltogeneratesyntheticctforprostatemronlyradiotherapydoseplanningamulticenterstudy
AT jeanclaudenunes deeplearningmodeltogeneratesyntheticctforprostatemronlyradiotherapydoseplanningamulticenterstudy
AT cedrichemon deeplearningmodeltogeneratesyntheticctforprostatemronlyradiotherapydoseplanningamulticenterstudy
AT paulinelekieffre deeplearningmodeltogeneratesyntheticctforprostatemronlyradiotherapydoseplanningamulticenterstudy
AT emmacollot deeplearningmodeltogeneratesyntheticctforprostatemronlyradiotherapydoseplanningamulticenterstudy
AT hildachourak deeplearningmodeltogeneratesyntheticctforprostatemronlyradiotherapydoseplanningamulticenterstudy
AT hildachourak deeplearningmodeltogeneratesyntheticctforprostatemronlyradiotherapydoseplanningamulticenterstudy
AT jenniferleguevelou deeplearningmodeltogeneratesyntheticctforprostatemronlyradiotherapydoseplanningamulticenterstudy
AT petergreer deeplearningmodeltogeneratesyntheticctforprostatemronlyradiotherapydoseplanningamulticenterstudy
AT petergreer deeplearningmodeltogeneratesyntheticctforprostatemronlyradiotherapydoseplanningamulticenterstudy
AT jasondowling deeplearningmodeltogeneratesyntheticctforprostatemronlyradiotherapydoseplanningamulticenterstudy
AT oscaracosta deeplearningmodeltogeneratesyntheticctforprostatemronlyradiotherapydoseplanningamulticenterstudy
AT igorbessieres deeplearningmodeltogeneratesyntheticctforprostatemronlyradiotherapydoseplanningamulticenterstudy
AT louismarage deeplearningmodeltogeneratesyntheticctforprostatemronlyradiotherapydoseplanningamulticenterstudy
AT adrienbouerafle deeplearningmodeltogeneratesyntheticctforprostatemronlyradiotherapydoseplanningamulticenterstudy
AT renauddecrevoisier deeplearningmodeltogeneratesyntheticctforprostatemronlyradiotherapydoseplanningamulticenterstudy
AT carolinelafond deeplearningmodeltogeneratesyntheticctforprostatemronlyradiotherapydoseplanningamulticenterstudy
AT anaisbarateau deeplearningmodeltogeneratesyntheticctforprostatemronlyradiotherapydoseplanningamulticenterstudy