The higher relative concentration of K<sup>+</sup> to Na<sup>+</sup> in saline water improves soil hydraulic conductivity, salt-leaching efficiency and structural stability
<p>Soil salinity and sodicity caused by saline water irrigation are widely observed globally. Clay dispersion and swelling are influenced by sodium (Na<span class="inline-formula"><sup>+</sup>)</span> concentration and electrical conductivity (EC) of soil solu...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2023-06-01
|
Series: | SOIL |
Online Access: | https://soil.copernicus.org/articles/9/339/2023/soil-9-339-2023.pdf |
_version_ | 1797796813323894784 |
---|---|
author | S. Yan S. Yan T. Zhang T. Zhang B. Zhang B. Zhang T. Zhang T. Zhang Y. Cheng Y. Cheng C. Wang C. Wang M. Luo M. Luo H. Feng H. Feng K. H. M. Siddique |
author_facet | S. Yan S. Yan T. Zhang T. Zhang B. Zhang B. Zhang T. Zhang T. Zhang Y. Cheng Y. Cheng C. Wang C. Wang M. Luo M. Luo H. Feng H. Feng K. H. M. Siddique |
author_sort | S. Yan |
collection | DOAJ |
description | <p>Soil salinity and sodicity caused by saline water irrigation are widely
observed globally. Clay dispersion and swelling are influenced by sodium
(Na<span class="inline-formula"><sup>+</sup>)</span> concentration and electrical conductivity (EC) of soil solution.
Specifically, soil potassium (K<span class="inline-formula"><sup>+</sup>)</span> also significantly affects soil
structural stability, but for which concern was rarely addressed in previous
studies or irrigation practices. A soil column experiment was carried out to
examine the effects of saline water with different relative concentrations
of K<span class="inline-formula"><sup>+</sup></span> to Na<span class="inline-formula"><sup>+</sup></span> (K<span class="inline-formula"><sup>+</sup></span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="3af55808dad7e355d8e0b0b2a0272ce7"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="soil-9-339-2023-ie00001.svg" width="8pt" height="14pt" src="soil-9-339-2023-ie00001.png"/></svg:svg></span></span> Na<span class="inline-formula"><sup>+</sup>)</span>, including K<span class="inline-formula"><sup>+</sup></span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="8550e2e9970f84100ffbfa4da4f4f543"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="soil-9-339-2023-ie00002.svg" width="8pt" height="14pt" src="soil-9-339-2023-ie00002.png"/></svg:svg></span></span> Na<span class="inline-formula"><sup>+</sup></span> of <span class="inline-formula">0:1</span>
(K0Na1), <span class="inline-formula">1:1</span> (K1Na1) and <span class="inline-formula">1:0</span> (K1Na0) at a constant EC (4 dS m<span class="inline-formula"><sup>−1</sup>)</span>, and
deionized water as the control (CK), on soil physicochemical properties. The
results indicated that at the constant EC of 4 dS m<span class="inline-formula"><sup>−1</sup></span>, the infiltration
rate and water content were significantly (<span class="inline-formula"><i>P</i><0.05</span>) affected by
K<span class="inline-formula"><sup>+</sup></span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M22" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="31e788933a21fe22f46ea9f18ad5813e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="soil-9-339-2023-ie00003.svg" width="8pt" height="14pt" src="soil-9-339-2023-ie00003.png"/></svg:svg></span></span> Na<span class="inline-formula"><sup>+</sup></span> values, and K0Na1, K1Na1 and K1Na0 significantly (<span class="inline-formula"><i>P</i><0.05</span>) reduced saturated hydraulic conductivity by 43.62 %, 29.04 % and
18.06 %, respectively, compared with CK. The volumetric water content was
significantly (<span class="inline-formula"><i>P</i><0.05</span>) higher in K0Na1 than CK at both 15 and 30 cm soil depths. K1Na1 and K1Na0 significantly (<span class="inline-formula"><i>P</i><0.05</span>) reduced the
desalination time and required leaching volume. K0Na1 and K1Na1 reached the
desalination standard after the fifth and second infiltration, respectively,
as K1Na0 did not exceed the bulk electrical conductivity required for
the desalination prerequisite throughout the whole infiltration cycle at 15 cm
soil layer. Furthermore, due to the transformation of macropores into
micropores spurred by clay dispersion, soil total porosity in K0Na1
dramatically decreased compared with CK, and K1Na0 even increased the
proportion of soil macropores. The higher relative concentration of K<span class="inline-formula"><sup>+</sup></span>
to Na<span class="inline-formula"><sup>+</sup></span> in saline water was more conducive to soil aggregate stability,
alleviating the risk of macropores reduction caused by sodicity.</p> |
first_indexed | 2024-03-13T03:38:41Z |
format | Article |
id | doaj.art-a1dbb3f25c5a46dfaae0127ed25922ec |
institution | Directory Open Access Journal |
issn | 2199-3971 2199-398X |
language | English |
last_indexed | 2024-03-13T03:38:41Z |
publishDate | 2023-06-01 |
publisher | Copernicus Publications |
record_format | Article |
series | SOIL |
spelling | doaj.art-a1dbb3f25c5a46dfaae0127ed25922ec2023-06-23T12:32:16ZengCopernicus PublicationsSOIL2199-39712199-398X2023-06-01933934910.5194/soil-9-339-2023The higher relative concentration of K<sup>+</sup> to Na<sup>+</sup> in saline water improves soil hydraulic conductivity, salt-leaching efficiency and structural stabilityS. Yan0S. Yan1T. Zhang2T. Zhang3B. Zhang4B. Zhang5T. Zhang6T. Zhang7Y. Cheng8Y. Cheng9C. Wang10C. Wang11M. Luo12M. Luo13H. Feng14H. Feng15K. H. M. Siddique16Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, ChinaCollege of Water Resources and Architecture Engineering, Northwest A&F University, Yangling, Shaanxi 712100, ChinaKey Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, ChinaInstitute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, ChinaKey Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, ChinaCollege of Water Resources and Architecture Engineering, Northwest A&F University, Yangling, Shaanxi 712100, ChinaKey Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, ChinaCollege of Water Resources and Architecture Engineering, Northwest A&F University, Yangling, Shaanxi 712100, ChinaKey Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, ChinaCollege of Water Resources and Architecture Engineering, Northwest A&F University, Yangling, Shaanxi 712100, ChinaKey Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, ChinaCollege of Water Resources and Architecture Engineering, Northwest A&F University, Yangling, Shaanxi 712100, ChinaKey Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, ChinaCollege of Water Resources and Architecture Engineering, Northwest A&F University, Yangling, Shaanxi 712100, ChinaKey Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, ChinaInstitute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, ChinaThe UWA Institute of Agriculture, The University of Western Australia, Perth WA 6001, Australia<p>Soil salinity and sodicity caused by saline water irrigation are widely observed globally. Clay dispersion and swelling are influenced by sodium (Na<span class="inline-formula"><sup>+</sup>)</span> concentration and electrical conductivity (EC) of soil solution. Specifically, soil potassium (K<span class="inline-formula"><sup>+</sup>)</span> also significantly affects soil structural stability, but for which concern was rarely addressed in previous studies or irrigation practices. A soil column experiment was carried out to examine the effects of saline water with different relative concentrations of K<span class="inline-formula"><sup>+</sup></span> to Na<span class="inline-formula"><sup>+</sup></span> (K<span class="inline-formula"><sup>+</sup></span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="3af55808dad7e355d8e0b0b2a0272ce7"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="soil-9-339-2023-ie00001.svg" width="8pt" height="14pt" src="soil-9-339-2023-ie00001.png"/></svg:svg></span></span> Na<span class="inline-formula"><sup>+</sup>)</span>, including K<span class="inline-formula"><sup>+</sup></span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="8550e2e9970f84100ffbfa4da4f4f543"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="soil-9-339-2023-ie00002.svg" width="8pt" height="14pt" src="soil-9-339-2023-ie00002.png"/></svg:svg></span></span> Na<span class="inline-formula"><sup>+</sup></span> of <span class="inline-formula">0:1</span> (K0Na1), <span class="inline-formula">1:1</span> (K1Na1) and <span class="inline-formula">1:0</span> (K1Na0) at a constant EC (4 dS m<span class="inline-formula"><sup>−1</sup>)</span>, and deionized water as the control (CK), on soil physicochemical properties. The results indicated that at the constant EC of 4 dS m<span class="inline-formula"><sup>−1</sup></span>, the infiltration rate and water content were significantly (<span class="inline-formula"><i>P</i><0.05</span>) affected by K<span class="inline-formula"><sup>+</sup></span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M22" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="31e788933a21fe22f46ea9f18ad5813e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="soil-9-339-2023-ie00003.svg" width="8pt" height="14pt" src="soil-9-339-2023-ie00003.png"/></svg:svg></span></span> Na<span class="inline-formula"><sup>+</sup></span> values, and K0Na1, K1Na1 and K1Na0 significantly (<span class="inline-formula"><i>P</i><0.05</span>) reduced saturated hydraulic conductivity by 43.62 %, 29.04 % and 18.06 %, respectively, compared with CK. The volumetric water content was significantly (<span class="inline-formula"><i>P</i><0.05</span>) higher in K0Na1 than CK at both 15 and 30 cm soil depths. K1Na1 and K1Na0 significantly (<span class="inline-formula"><i>P</i><0.05</span>) reduced the desalination time and required leaching volume. K0Na1 and K1Na1 reached the desalination standard after the fifth and second infiltration, respectively, as K1Na0 did not exceed the bulk electrical conductivity required for the desalination prerequisite throughout the whole infiltration cycle at 15 cm soil layer. Furthermore, due to the transformation of macropores into micropores spurred by clay dispersion, soil total porosity in K0Na1 dramatically decreased compared with CK, and K1Na0 even increased the proportion of soil macropores. The higher relative concentration of K<span class="inline-formula"><sup>+</sup></span> to Na<span class="inline-formula"><sup>+</sup></span> in saline water was more conducive to soil aggregate stability, alleviating the risk of macropores reduction caused by sodicity.</p>https://soil.copernicus.org/articles/9/339/2023/soil-9-339-2023.pdf |
spellingShingle | S. Yan S. Yan T. Zhang T. Zhang B. Zhang B. Zhang T. Zhang T. Zhang Y. Cheng Y. Cheng C. Wang C. Wang M. Luo M. Luo H. Feng H. Feng K. H. M. Siddique The higher relative concentration of K<sup>+</sup> to Na<sup>+</sup> in saline water improves soil hydraulic conductivity, salt-leaching efficiency and structural stability SOIL |
title | The higher relative concentration of K<sup>+</sup> to Na<sup>+</sup> in saline water improves soil hydraulic conductivity, salt-leaching efficiency and structural stability |
title_full | The higher relative concentration of K<sup>+</sup> to Na<sup>+</sup> in saline water improves soil hydraulic conductivity, salt-leaching efficiency and structural stability |
title_fullStr | The higher relative concentration of K<sup>+</sup> to Na<sup>+</sup> in saline water improves soil hydraulic conductivity, salt-leaching efficiency and structural stability |
title_full_unstemmed | The higher relative concentration of K<sup>+</sup> to Na<sup>+</sup> in saline water improves soil hydraulic conductivity, salt-leaching efficiency and structural stability |
title_short | The higher relative concentration of K<sup>+</sup> to Na<sup>+</sup> in saline water improves soil hydraulic conductivity, salt-leaching efficiency and structural stability |
title_sort | higher relative concentration of k sup sup to na sup sup in saline water improves soil hydraulic conductivity salt leaching efficiency and structural stability |
url | https://soil.copernicus.org/articles/9/339/2023/soil-9-339-2023.pdf |
work_keys_str_mv | AT syan thehigherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability AT syan thehigherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability AT tzhang thehigherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability AT tzhang thehigherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability AT bzhang thehigherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability AT bzhang thehigherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability AT tzhang thehigherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability AT tzhang thehigherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability AT ycheng thehigherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability AT ycheng thehigherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability AT cwang thehigherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability AT cwang thehigherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability AT mluo thehigherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability AT mluo thehigherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability AT hfeng thehigherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability AT hfeng thehigherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability AT khmsiddique thehigherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability AT syan higherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability AT syan higherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability AT tzhang higherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability AT tzhang higherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability AT bzhang higherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability AT bzhang higherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability AT tzhang higherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability AT tzhang higherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability AT ycheng higherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability AT ycheng higherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability AT cwang higherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability AT cwang higherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability AT mluo higherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability AT mluo higherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability AT hfeng higherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability AT hfeng higherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability AT khmsiddique higherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability |