The higher relative concentration of K<sup>+</sup> to Na<sup>+</sup> in saline water improves soil hydraulic conductivity, salt-leaching efficiency and structural stability

<p>Soil salinity and sodicity caused by saline water irrigation are widely observed globally. Clay dispersion and swelling are influenced by sodium (Na<span class="inline-formula"><sup>+</sup>)</span> concentration and electrical conductivity (EC) of soil solu...

Full description

Bibliographic Details
Main Authors: S. Yan, T. Zhang, B. Zhang, Y. Cheng, C. Wang, M. Luo, H. Feng, K. H. M. Siddique
Format: Article
Language:English
Published: Copernicus Publications 2023-06-01
Series:SOIL
Online Access:https://soil.copernicus.org/articles/9/339/2023/soil-9-339-2023.pdf
_version_ 1797796813323894784
author S. Yan
S. Yan
T. Zhang
T. Zhang
B. Zhang
B. Zhang
T. Zhang
T. Zhang
Y. Cheng
Y. Cheng
C. Wang
C. Wang
M. Luo
M. Luo
H. Feng
H. Feng
K. H. M. Siddique
author_facet S. Yan
S. Yan
T. Zhang
T. Zhang
B. Zhang
B. Zhang
T. Zhang
T. Zhang
Y. Cheng
Y. Cheng
C. Wang
C. Wang
M. Luo
M. Luo
H. Feng
H. Feng
K. H. M. Siddique
author_sort S. Yan
collection DOAJ
description <p>Soil salinity and sodicity caused by saline water irrigation are widely observed globally. Clay dispersion and swelling are influenced by sodium (Na<span class="inline-formula"><sup>+</sup>)</span> concentration and electrical conductivity (EC) of soil solution. Specifically, soil potassium (K<span class="inline-formula"><sup>+</sup>)</span> also significantly affects soil structural stability, but for which concern was rarely addressed in previous studies or irrigation practices. A soil column experiment was carried out to examine the effects of saline water with different relative concentrations of K<span class="inline-formula"><sup>+</sup></span> to Na<span class="inline-formula"><sup>+</sup></span> (K<span class="inline-formula"><sup>+</sup></span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="3af55808dad7e355d8e0b0b2a0272ce7"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="soil-9-339-2023-ie00001.svg" width="8pt" height="14pt" src="soil-9-339-2023-ie00001.png"/></svg:svg></span></span> Na<span class="inline-formula"><sup>+</sup>)</span>, including K<span class="inline-formula"><sup>+</sup></span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="8550e2e9970f84100ffbfa4da4f4f543"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="soil-9-339-2023-ie00002.svg" width="8pt" height="14pt" src="soil-9-339-2023-ie00002.png"/></svg:svg></span></span> Na<span class="inline-formula"><sup>+</sup></span> of <span class="inline-formula">0:1</span> (K0Na1), <span class="inline-formula">1:1</span> (K1Na1) and <span class="inline-formula">1:0</span> (K1Na0) at a constant EC (4 dS m<span class="inline-formula"><sup>−1</sup>)</span>, and deionized water as the control (CK), on soil physicochemical properties. The results indicated that at the constant EC of 4 dS m<span class="inline-formula"><sup>−1</sup></span>, the infiltration rate and water content were significantly (<span class="inline-formula"><i>P</i>&lt;0.05</span>) affected by K<span class="inline-formula"><sup>+</sup></span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M22" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="31e788933a21fe22f46ea9f18ad5813e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="soil-9-339-2023-ie00003.svg" width="8pt" height="14pt" src="soil-9-339-2023-ie00003.png"/></svg:svg></span></span> Na<span class="inline-formula"><sup>+</sup></span> values, and K0Na1, K1Na1 and K1Na0 significantly (<span class="inline-formula"><i>P</i>&lt;0.05</span>) reduced saturated hydraulic conductivity by 43.62 %, 29.04 % and 18.06 %, respectively, compared with CK. The volumetric water content was significantly (<span class="inline-formula"><i>P</i>&lt;0.05</span>) higher in K0Na1 than CK at both 15 and 30 cm soil depths. K1Na1 and K1Na0 significantly (<span class="inline-formula"><i>P</i>&lt;0.05</span>) reduced the desalination time and required leaching volume. K0Na1 and K1Na1 reached the desalination standard after the fifth and second infiltration, respectively, as K1Na0 did not exceed the bulk electrical conductivity required for the desalination prerequisite throughout the whole infiltration cycle at 15 cm soil layer. Furthermore, due to the transformation of macropores into micropores spurred by clay dispersion, soil total porosity in K0Na1 dramatically decreased compared with CK, and K1Na0 even increased the proportion of soil macropores. The higher relative concentration of K<span class="inline-formula"><sup>+</sup></span> to Na<span class="inline-formula"><sup>+</sup></span> in saline water was more conducive to soil aggregate stability, alleviating the risk of macropores reduction caused by sodicity.</p>
first_indexed 2024-03-13T03:38:41Z
format Article
id doaj.art-a1dbb3f25c5a46dfaae0127ed25922ec
institution Directory Open Access Journal
issn 2199-3971
2199-398X
language English
last_indexed 2024-03-13T03:38:41Z
publishDate 2023-06-01
publisher Copernicus Publications
record_format Article
series SOIL
spelling doaj.art-a1dbb3f25c5a46dfaae0127ed25922ec2023-06-23T12:32:16ZengCopernicus PublicationsSOIL2199-39712199-398X2023-06-01933934910.5194/soil-9-339-2023The higher relative concentration of K<sup>+</sup> to Na<sup>+</sup> in saline water improves soil hydraulic conductivity, salt-leaching efficiency and structural stabilityS. Yan0S. Yan1T. Zhang2T. Zhang3B. Zhang4B. Zhang5T. Zhang6T. Zhang7Y. Cheng8Y. Cheng9C. Wang10C. Wang11M. Luo12M. Luo13H. Feng14H. Feng15K. H. M. Siddique16Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, ChinaCollege of Water Resources and Architecture Engineering, Northwest A&F University, Yangling, Shaanxi 712100, ChinaKey Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, ChinaInstitute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, ChinaKey Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, ChinaCollege of Water Resources and Architecture Engineering, Northwest A&F University, Yangling, Shaanxi 712100, ChinaKey Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, ChinaCollege of Water Resources and Architecture Engineering, Northwest A&F University, Yangling, Shaanxi 712100, ChinaKey Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, ChinaCollege of Water Resources and Architecture Engineering, Northwest A&F University, Yangling, Shaanxi 712100, ChinaKey Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, ChinaCollege of Water Resources and Architecture Engineering, Northwest A&F University, Yangling, Shaanxi 712100, ChinaKey Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, ChinaCollege of Water Resources and Architecture Engineering, Northwest A&F University, Yangling, Shaanxi 712100, ChinaKey Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, ChinaInstitute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, ChinaThe UWA Institute of Agriculture, The University of Western Australia, Perth WA 6001, Australia<p>Soil salinity and sodicity caused by saline water irrigation are widely observed globally. Clay dispersion and swelling are influenced by sodium (Na<span class="inline-formula"><sup>+</sup>)</span> concentration and electrical conductivity (EC) of soil solution. Specifically, soil potassium (K<span class="inline-formula"><sup>+</sup>)</span> also significantly affects soil structural stability, but for which concern was rarely addressed in previous studies or irrigation practices. A soil column experiment was carried out to examine the effects of saline water with different relative concentrations of K<span class="inline-formula"><sup>+</sup></span> to Na<span class="inline-formula"><sup>+</sup></span> (K<span class="inline-formula"><sup>+</sup></span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="3af55808dad7e355d8e0b0b2a0272ce7"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="soil-9-339-2023-ie00001.svg" width="8pt" height="14pt" src="soil-9-339-2023-ie00001.png"/></svg:svg></span></span> Na<span class="inline-formula"><sup>+</sup>)</span>, including K<span class="inline-formula"><sup>+</sup></span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="8550e2e9970f84100ffbfa4da4f4f543"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="soil-9-339-2023-ie00002.svg" width="8pt" height="14pt" src="soil-9-339-2023-ie00002.png"/></svg:svg></span></span> Na<span class="inline-formula"><sup>+</sup></span> of <span class="inline-formula">0:1</span> (K0Na1), <span class="inline-formula">1:1</span> (K1Na1) and <span class="inline-formula">1:0</span> (K1Na0) at a constant EC (4 dS m<span class="inline-formula"><sup>−1</sup>)</span>, and deionized water as the control (CK), on soil physicochemical properties. The results indicated that at the constant EC of 4 dS m<span class="inline-formula"><sup>−1</sup></span>, the infiltration rate and water content were significantly (<span class="inline-formula"><i>P</i>&lt;0.05</span>) affected by K<span class="inline-formula"><sup>+</sup></span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M22" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="31e788933a21fe22f46ea9f18ad5813e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="soil-9-339-2023-ie00003.svg" width="8pt" height="14pt" src="soil-9-339-2023-ie00003.png"/></svg:svg></span></span> Na<span class="inline-formula"><sup>+</sup></span> values, and K0Na1, K1Na1 and K1Na0 significantly (<span class="inline-formula"><i>P</i>&lt;0.05</span>) reduced saturated hydraulic conductivity by 43.62 %, 29.04 % and 18.06 %, respectively, compared with CK. The volumetric water content was significantly (<span class="inline-formula"><i>P</i>&lt;0.05</span>) higher in K0Na1 than CK at both 15 and 30 cm soil depths. K1Na1 and K1Na0 significantly (<span class="inline-formula"><i>P</i>&lt;0.05</span>) reduced the desalination time and required leaching volume. K0Na1 and K1Na1 reached the desalination standard after the fifth and second infiltration, respectively, as K1Na0 did not exceed the bulk electrical conductivity required for the desalination prerequisite throughout the whole infiltration cycle at 15 cm soil layer. Furthermore, due to the transformation of macropores into micropores spurred by clay dispersion, soil total porosity in K0Na1 dramatically decreased compared with CK, and K1Na0 even increased the proportion of soil macropores. The higher relative concentration of K<span class="inline-formula"><sup>+</sup></span> to Na<span class="inline-formula"><sup>+</sup></span> in saline water was more conducive to soil aggregate stability, alleviating the risk of macropores reduction caused by sodicity.</p>https://soil.copernicus.org/articles/9/339/2023/soil-9-339-2023.pdf
spellingShingle S. Yan
S. Yan
T. Zhang
T. Zhang
B. Zhang
B. Zhang
T. Zhang
T. Zhang
Y. Cheng
Y. Cheng
C. Wang
C. Wang
M. Luo
M. Luo
H. Feng
H. Feng
K. H. M. Siddique
The higher relative concentration of K<sup>+</sup> to Na<sup>+</sup> in saline water improves soil hydraulic conductivity, salt-leaching efficiency and structural stability
SOIL
title The higher relative concentration of K<sup>+</sup> to Na<sup>+</sup> in saline water improves soil hydraulic conductivity, salt-leaching efficiency and structural stability
title_full The higher relative concentration of K<sup>+</sup> to Na<sup>+</sup> in saline water improves soil hydraulic conductivity, salt-leaching efficiency and structural stability
title_fullStr The higher relative concentration of K<sup>+</sup> to Na<sup>+</sup> in saline water improves soil hydraulic conductivity, salt-leaching efficiency and structural stability
title_full_unstemmed The higher relative concentration of K<sup>+</sup> to Na<sup>+</sup> in saline water improves soil hydraulic conductivity, salt-leaching efficiency and structural stability
title_short The higher relative concentration of K<sup>+</sup> to Na<sup>+</sup> in saline water improves soil hydraulic conductivity, salt-leaching efficiency and structural stability
title_sort higher relative concentration of k sup sup to na sup sup in saline water improves soil hydraulic conductivity salt leaching efficiency and structural stability
url https://soil.copernicus.org/articles/9/339/2023/soil-9-339-2023.pdf
work_keys_str_mv AT syan thehigherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability
AT syan thehigherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability
AT tzhang thehigherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability
AT tzhang thehigherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability
AT bzhang thehigherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability
AT bzhang thehigherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability
AT tzhang thehigherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability
AT tzhang thehigherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability
AT ycheng thehigherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability
AT ycheng thehigherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability
AT cwang thehigherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability
AT cwang thehigherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability
AT mluo thehigherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability
AT mluo thehigherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability
AT hfeng thehigherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability
AT hfeng thehigherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability
AT khmsiddique thehigherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability
AT syan higherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability
AT syan higherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability
AT tzhang higherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability
AT tzhang higherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability
AT bzhang higherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability
AT bzhang higherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability
AT tzhang higherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability
AT tzhang higherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability
AT ycheng higherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability
AT ycheng higherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability
AT cwang higherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability
AT cwang higherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability
AT mluo higherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability
AT mluo higherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability
AT hfeng higherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability
AT hfeng higherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability
AT khmsiddique higherrelativeconcentrationofksupsuptonasupsupinsalinewaterimprovessoilhydraulicconductivitysaltleachingefficiencyandstructuralstability