The Explainable Potential of Coupling Metaheuristics-Optimized-XGBoost and SHAP in Revealing VOCs’ Environmental Fate

In this paper, we explore the computational capabilities of advanced modeling tools to reveal the factors that shape the observed benzene levels and behavior under different environmental conditions. The research was based on two-year hourly data concentrations of inorganic gaseous pollutants, parti...

Full description

Bibliographic Details
Main Authors: Luka Jovanovic, Gordana Jovanovic, Mirjana Perisic, Filip Alimpic, Svetlana Stanisic, Nebojsa Bacanin, Miodrag Zivkovic, Andreja Stojic
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Atmosphere
Subjects:
Online Access:https://www.mdpi.com/2073-4433/14/1/109
_version_ 1797446300504948736
author Luka Jovanovic
Gordana Jovanovic
Mirjana Perisic
Filip Alimpic
Svetlana Stanisic
Nebojsa Bacanin
Miodrag Zivkovic
Andreja Stojic
author_facet Luka Jovanovic
Gordana Jovanovic
Mirjana Perisic
Filip Alimpic
Svetlana Stanisic
Nebojsa Bacanin
Miodrag Zivkovic
Andreja Stojic
author_sort Luka Jovanovic
collection DOAJ
description In this paper, we explore the computational capabilities of advanced modeling tools to reveal the factors that shape the observed benzene levels and behavior under different environmental conditions. The research was based on two-year hourly data concentrations of inorganic gaseous pollutants, particulate matter, benzene, toluene, m, p-xylenes, total nonmethane hydrocarbons, and meteorological parameters obtained from the Global Data Assimilation System. In order to determine the model that will be capable of achieving a superior level of performance, eight metaheuristics algorithms were tested for eXtreme Gradient Boosting optimization, while the relative SHapley Additive exPlanations values were used to estimate the relative importance of each pollutant level and meteorological parameter for the prediction of benzene concentrations. According to the results, benzene levels are mostly shaped by toluene and the finest aerosol fraction concentrations, in the environment governed by temperature, volumetric soil moisture content, and momentum flux direction, as well as by levels of total nonmethane hydrocarbons and total nitrogen oxide. The types of conditions which provided the environment for the impact of toluene, the finest aerosol, and temperature on benzene dynamics are distinguished and described.
first_indexed 2024-03-09T13:38:20Z
format Article
id doaj.art-a1e20a96b93a4e86b489878c8752033a
institution Directory Open Access Journal
issn 2073-4433
language English
last_indexed 2024-03-09T13:38:20Z
publishDate 2023-01-01
publisher MDPI AG
record_format Article
series Atmosphere
spelling doaj.art-a1e20a96b93a4e86b489878c8752033a2023-11-30T21:09:31ZengMDPI AGAtmosphere2073-44332023-01-0114110910.3390/atmos14010109The Explainable Potential of Coupling Metaheuristics-Optimized-XGBoost and SHAP in Revealing VOCs’ Environmental FateLuka Jovanovic0Gordana Jovanovic1Mirjana Perisic2Filip Alimpic3Svetlana Stanisic4Nebojsa Bacanin5Miodrag Zivkovic6Andreja Stojic7Faculty of Informatics and Computing, Singidunum University, Danijelova 32, 11010 Belgrade, SerbiaInstitute of Physics Belgrade, National Institute of the Republic of Serbia, University of Belgrade, Pregrevica 118, 11080 Belgrade, SerbiaInstitute of Physics Belgrade, National Institute of the Republic of Serbia, University of Belgrade, Pregrevica 118, 11080 Belgrade, SerbiaInstitute of Physics Belgrade, National Institute of the Republic of Serbia, University of Belgrade, Pregrevica 118, 11080 Belgrade, SerbiaEnvironment and Sustainable Development, Singidunum University, Danijelova 32, 11010 Belgrade, SerbiaFaculty of Informatics and Computing, Singidunum University, Danijelova 32, 11010 Belgrade, SerbiaFaculty of Informatics and Computing, Singidunum University, Danijelova 32, 11010 Belgrade, SerbiaInstitute of Physics Belgrade, National Institute of the Republic of Serbia, University of Belgrade, Pregrevica 118, 11080 Belgrade, SerbiaIn this paper, we explore the computational capabilities of advanced modeling tools to reveal the factors that shape the observed benzene levels and behavior under different environmental conditions. The research was based on two-year hourly data concentrations of inorganic gaseous pollutants, particulate matter, benzene, toluene, m, p-xylenes, total nonmethane hydrocarbons, and meteorological parameters obtained from the Global Data Assimilation System. In order to determine the model that will be capable of achieving a superior level of performance, eight metaheuristics algorithms were tested for eXtreme Gradient Boosting optimization, while the relative SHapley Additive exPlanations values were used to estimate the relative importance of each pollutant level and meteorological parameter for the prediction of benzene concentrations. According to the results, benzene levels are mostly shaped by toluene and the finest aerosol fraction concentrations, in the environment governed by temperature, volumetric soil moisture content, and momentum flux direction, as well as by levels of total nonmethane hydrocarbons and total nitrogen oxide. The types of conditions which provided the environment for the impact of toluene, the finest aerosol, and temperature on benzene dynamics are distinguished and described.https://www.mdpi.com/2073-4433/14/1/109machine learningextreme gradient boostingmetaheuristicsswarm intelligenceexplainable artificial intelligencevolatile organic compounds
spellingShingle Luka Jovanovic
Gordana Jovanovic
Mirjana Perisic
Filip Alimpic
Svetlana Stanisic
Nebojsa Bacanin
Miodrag Zivkovic
Andreja Stojic
The Explainable Potential of Coupling Metaheuristics-Optimized-XGBoost and SHAP in Revealing VOCs’ Environmental Fate
Atmosphere
machine learning
extreme gradient boosting
metaheuristics
swarm intelligence
explainable artificial intelligence
volatile organic compounds
title The Explainable Potential of Coupling Metaheuristics-Optimized-XGBoost and SHAP in Revealing VOCs’ Environmental Fate
title_full The Explainable Potential of Coupling Metaheuristics-Optimized-XGBoost and SHAP in Revealing VOCs’ Environmental Fate
title_fullStr The Explainable Potential of Coupling Metaheuristics-Optimized-XGBoost and SHAP in Revealing VOCs’ Environmental Fate
title_full_unstemmed The Explainable Potential of Coupling Metaheuristics-Optimized-XGBoost and SHAP in Revealing VOCs’ Environmental Fate
title_short The Explainable Potential of Coupling Metaheuristics-Optimized-XGBoost and SHAP in Revealing VOCs’ Environmental Fate
title_sort explainable potential of coupling metaheuristics optimized xgboost and shap in revealing vocs environmental fate
topic machine learning
extreme gradient boosting
metaheuristics
swarm intelligence
explainable artificial intelligence
volatile organic compounds
url https://www.mdpi.com/2073-4433/14/1/109
work_keys_str_mv AT lukajovanovic theexplainablepotentialofcouplingmetaheuristicsoptimizedxgboostandshapinrevealingvocsenvironmentalfate
AT gordanajovanovic theexplainablepotentialofcouplingmetaheuristicsoptimizedxgboostandshapinrevealingvocsenvironmentalfate
AT mirjanaperisic theexplainablepotentialofcouplingmetaheuristicsoptimizedxgboostandshapinrevealingvocsenvironmentalfate
AT filipalimpic theexplainablepotentialofcouplingmetaheuristicsoptimizedxgboostandshapinrevealingvocsenvironmentalfate
AT svetlanastanisic theexplainablepotentialofcouplingmetaheuristicsoptimizedxgboostandshapinrevealingvocsenvironmentalfate
AT nebojsabacanin theexplainablepotentialofcouplingmetaheuristicsoptimizedxgboostandshapinrevealingvocsenvironmentalfate
AT miodragzivkovic theexplainablepotentialofcouplingmetaheuristicsoptimizedxgboostandshapinrevealingvocsenvironmentalfate
AT andrejastojic theexplainablepotentialofcouplingmetaheuristicsoptimizedxgboostandshapinrevealingvocsenvironmentalfate
AT lukajovanovic explainablepotentialofcouplingmetaheuristicsoptimizedxgboostandshapinrevealingvocsenvironmentalfate
AT gordanajovanovic explainablepotentialofcouplingmetaheuristicsoptimizedxgboostandshapinrevealingvocsenvironmentalfate
AT mirjanaperisic explainablepotentialofcouplingmetaheuristicsoptimizedxgboostandshapinrevealingvocsenvironmentalfate
AT filipalimpic explainablepotentialofcouplingmetaheuristicsoptimizedxgboostandshapinrevealingvocsenvironmentalfate
AT svetlanastanisic explainablepotentialofcouplingmetaheuristicsoptimizedxgboostandshapinrevealingvocsenvironmentalfate
AT nebojsabacanin explainablepotentialofcouplingmetaheuristicsoptimizedxgboostandshapinrevealingvocsenvironmentalfate
AT miodragzivkovic explainablepotentialofcouplingmetaheuristicsoptimizedxgboostandshapinrevealingvocsenvironmentalfate
AT andrejastojic explainablepotentialofcouplingmetaheuristicsoptimizedxgboostandshapinrevealingvocsenvironmentalfate