Mechanical and Thermal Analyses of Metal-PLA Components Fabricated by Metal Material Extrusion

Metal additive manufacturing (AM) has gained much attention in recent years due to its advantages including geometric freedom and design complexity, appropriate for a wide range of potential industrial applications. However, conventional metal AM methods have high-cost barriers due to the initial co...

Full description

Bibliographic Details
Main Authors: Mahdi Mohammadizadeh, Hao Lu, Ismail Fidan, Khalid Tantawi, Ankit Gupta, Seymur Hasanov, Zhicheng Zhang, Frank Alifui-Segbaya, Allan Rennie
Format: Article
Language:English
Published: MDPI AG 2020-08-01
Series:Inventions
Subjects:
Online Access:https://www.mdpi.com/2411-5134/5/3/44
Description
Summary:Metal additive manufacturing (AM) has gained much attention in recent years due to its advantages including geometric freedom and design complexity, appropriate for a wide range of potential industrial applications. However, conventional metal AM methods have high-cost barriers due to the initial cost of the capital equipment, support, and maintenance, etc. This study presents a low-cost metal material extrusion technology as a prospective alternative to the production of metallic parts in additive manufacturing. The filaments used consist of copper, bronze, stainless steel, high carbon iron, and aluminum powders in a polylactic acid matrix. Using the proposed fabrication technology, test specimens were built by extruding metal/polymer composite filaments, which were then sintered in an open-air furnace to produce solid metallic parts. In this research, the mechanical and thermal properties of the built parts are examined using tensile tests, thermogravimetric, thermomechanical and microstructural analysis.
ISSN:2411-5134