Metallic Structures for Tangent Bundles over Almost Quadratic <i>ϕ</i>-Manifolds

This paper aims to explore the metallic structure <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>J</mi><mn>2</mn></msup><mo>=</mo><mi>p</...

Full description

Bibliographic Details
Main Authors: Mohammad Nazrul Islam Khan, Sudhakar Kumar Chaubey, Nahid Fatima, Afifah Al Eid
Format: Article
Language:English
Published: MDPI AG 2023-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/22/4683
_version_ 1797458527004917760
author Mohammad Nazrul Islam Khan
Sudhakar Kumar Chaubey
Nahid Fatima
Afifah Al Eid
author_facet Mohammad Nazrul Islam Khan
Sudhakar Kumar Chaubey
Nahid Fatima
Afifah Al Eid
author_sort Mohammad Nazrul Islam Khan
collection DOAJ
description This paper aims to explore the metallic structure <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>J</mi><mn>2</mn></msup><mo>=</mo><mi>p</mi><mi>J</mi><mo>+</mo><mi>q</mi><mi>I</mi><mo>,</mo></mrow></semantics></math></inline-formula> where <i>p</i> and <i>q</i> are natural numbers, using complete and horizontal lifts on the tangent bundle <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mi>M</mi></mrow></semantics></math></inline-formula> over almost quadratic <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula>-structures (briefly, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>ϕ</mi><mo>,</mo><mi>ξ</mi><mo>,</mo><mi>η</mi><mo>)</mo></mrow></semantics></math></inline-formula>). Tensor fields <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>F</mi><mo>˜</mo></mover></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>F</mi><mo>*</mo></msup></semantics></math></inline-formula> are defined on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mi>M</mi></mrow></semantics></math></inline-formula>, and it is shown that they are metallic structures over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>ϕ</mi><mo>,</mo><mi>ξ</mi><mo>,</mo><mi>η</mi><mo>)</mo></mrow></semantics></math></inline-formula>. Next, the fundamental 2-form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Ω</mo></semantics></math></inline-formula> and its derivative <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>d</mi><mo>Ω</mo></mrow></semantics></math></inline-formula>, with the help of complete lift on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mi>M</mi></mrow></semantics></math></inline-formula> over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>ϕ</mi><mo>,</mo><mi>ξ</mi><mo>,</mo><mi>η</mi><mo>)</mo></mrow></semantics></math></inline-formula>, are evaluated. Furthermore, the integrability conditions and expressions of the Lie derivative of metallic structures <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>F</mi><mo>˜</mo></mover></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>F</mi><mo>*</mo></msup></semantics></math></inline-formula> are determined using complete and horizontal lifts on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mi>M</mi></mrow></semantics></math></inline-formula> over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>ϕ</mi><mo>,</mo><mi>ξ</mi><mo>,</mo><mi>η</mi><mo>)</mo></mrow></semantics></math></inline-formula>, respectively. Finally, we prove the existence of almost quadratic <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula>-structures on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mi>M</mi></mrow></semantics></math></inline-formula> with non-trivial examples.
first_indexed 2024-03-09T16:38:25Z
format Article
id doaj.art-a1fe0fb5ec98497fa9b242685d0c3736
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T16:38:25Z
publishDate 2023-11-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-a1fe0fb5ec98497fa9b242685d0c37362023-11-24T14:54:28ZengMDPI AGMathematics2227-73902023-11-011122468310.3390/math11224683Metallic Structures for Tangent Bundles over Almost Quadratic <i>ϕ</i>-ManifoldsMohammad Nazrul Islam Khan0Sudhakar Kumar Chaubey1Nahid Fatima2Afifah Al Eid3Department of Computer Engineering, College of Computer, Qassim University, Buraydah 51452, Saudi ArabiaSection of Mathematics, Department of Information Technology, University of Technology and Applied Sciences, P.O. Box 77, Shinas 324, OmanDepartment of Mathematics and Sciences, Prince Sultan University, Riyadh 11586, Saudi ArabiaDepartment of Mathematics and Sciences, Prince Sultan University, Riyadh 11586, Saudi ArabiaThis paper aims to explore the metallic structure <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>J</mi><mn>2</mn></msup><mo>=</mo><mi>p</mi><mi>J</mi><mo>+</mo><mi>q</mi><mi>I</mi><mo>,</mo></mrow></semantics></math></inline-formula> where <i>p</i> and <i>q</i> are natural numbers, using complete and horizontal lifts on the tangent bundle <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mi>M</mi></mrow></semantics></math></inline-formula> over almost quadratic <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula>-structures (briefly, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>ϕ</mi><mo>,</mo><mi>ξ</mi><mo>,</mo><mi>η</mi><mo>)</mo></mrow></semantics></math></inline-formula>). Tensor fields <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>F</mi><mo>˜</mo></mover></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>F</mi><mo>*</mo></msup></semantics></math></inline-formula> are defined on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mi>M</mi></mrow></semantics></math></inline-formula>, and it is shown that they are metallic structures over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>ϕ</mi><mo>,</mo><mi>ξ</mi><mo>,</mo><mi>η</mi><mo>)</mo></mrow></semantics></math></inline-formula>. Next, the fundamental 2-form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Ω</mo></semantics></math></inline-formula> and its derivative <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>d</mi><mo>Ω</mo></mrow></semantics></math></inline-formula>, with the help of complete lift on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mi>M</mi></mrow></semantics></math></inline-formula> over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>ϕ</mi><mo>,</mo><mi>ξ</mi><mo>,</mo><mi>η</mi><mo>)</mo></mrow></semantics></math></inline-formula>, are evaluated. Furthermore, the integrability conditions and expressions of the Lie derivative of metallic structures <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>F</mi><mo>˜</mo></mover></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>F</mi><mo>*</mo></msup></semantics></math></inline-formula> are determined using complete and horizontal lifts on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mi>M</mi></mrow></semantics></math></inline-formula> over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>ϕ</mi><mo>,</mo><mi>ξ</mi><mo>,</mo><mi>η</mi><mo>)</mo></mrow></semantics></math></inline-formula>, respectively. Finally, we prove the existence of almost quadratic <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula>-structures on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mi>M</mi></mrow></semantics></math></inline-formula> with non-trivial examples.https://www.mdpi.com/2227-7390/11/22/4683metallic structuretangent bundlepartial differential equationsnijenhuis tensormathematical operatorslie derivatives
spellingShingle Mohammad Nazrul Islam Khan
Sudhakar Kumar Chaubey
Nahid Fatima
Afifah Al Eid
Metallic Structures for Tangent Bundles over Almost Quadratic <i>ϕ</i>-Manifolds
Mathematics
metallic structure
tangent bundle
partial differential equations
nijenhuis tensor
mathematical operators
lie derivatives
title Metallic Structures for Tangent Bundles over Almost Quadratic <i>ϕ</i>-Manifolds
title_full Metallic Structures for Tangent Bundles over Almost Quadratic <i>ϕ</i>-Manifolds
title_fullStr Metallic Structures for Tangent Bundles over Almost Quadratic <i>ϕ</i>-Manifolds
title_full_unstemmed Metallic Structures for Tangent Bundles over Almost Quadratic <i>ϕ</i>-Manifolds
title_short Metallic Structures for Tangent Bundles over Almost Quadratic <i>ϕ</i>-Manifolds
title_sort metallic structures for tangent bundles over almost quadratic i ϕ i manifolds
topic metallic structure
tangent bundle
partial differential equations
nijenhuis tensor
mathematical operators
lie derivatives
url https://www.mdpi.com/2227-7390/11/22/4683
work_keys_str_mv AT mohammadnazrulislamkhan metallicstructuresfortangentbundlesoveralmostquadraticiphimanifolds
AT sudhakarkumarchaubey metallicstructuresfortangentbundlesoveralmostquadraticiphimanifolds
AT nahidfatima metallicstructuresfortangentbundlesoveralmostquadraticiphimanifolds
AT afifahaleid metallicstructuresfortangentbundlesoveralmostquadraticiphimanifolds