Ground states solutions for some non-autonomous Schrödinger-Bopp-Podolsky system

In this paper we study the existence of ground states solutions for non-autonomous Schrödinger–Bopp–Podolsky system \begin{equation*} \begin{cases} -\Delta u + u +\lambda K(x)\phi u = b(x)|u|^{p-2}u & \text{in} \ \mathbb{R}^{3}, \\ -\Delta \phi + a^2\Delta^2\phi = 4\pi K(x) u^{2}...

Full description

Bibliographic Details
Main Authors: Chun-Rong Jia, Lin Li, Shang-Jie Chen
Format: Article
Language:English
Published: University of Szeged 2022-10-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=10041
_version_ 1797830454873686016
author Chun-Rong Jia
Lin Li
Shang-Jie Chen
author_facet Chun-Rong Jia
Lin Li
Shang-Jie Chen
author_sort Chun-Rong Jia
collection DOAJ
description In this paper we study the existence of ground states solutions for non-autonomous Schrödinger–Bopp–Podolsky system \begin{equation*} \begin{cases} -\Delta u + u +\lambda K(x)\phi u = b(x)|u|^{p-2}u & \text{in} \ \mathbb{R}^{3}, \\ -\Delta \phi + a^2\Delta^2\phi = 4\pi K(x) u^{2} & \text{in}\ \mathbb{R}^{3}, \end{cases} \end{equation*} where $\lambda>0, 2<p\leq 4$ and both $K(x)$ and $b(x)$ are nonnegative functions in $\mathbb{R}^{3}$. Assuming that ${\lim_{\vert{x}\vert \to +\infty}}K(x)=K_\infty >0$ and ${\lim_{\vert{x}\vert \to +\infty}}b(x)=b_\infty >0$ and satisfying suitable assumptions, but not requiring any symmetry property on them. We show that the existence of a positive solution depends on the parameters $\lambda$ and $p$. We also establish the existence of ground state solutions for the case $3.18\approx\frac{1+\sqrt{73}}{3}<p\le{4}$.
first_indexed 2024-04-09T13:36:20Z
format Article
id doaj.art-a205eb15ab3e4bb1bce3c08815d7d1dc
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:36:20Z
publishDate 2022-10-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-a205eb15ab3e4bb1bce3c08815d7d1dc2023-05-09T07:53:12ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752022-10-0120225112910.14232/ejqtde.2022.1.5110041Ground states solutions for some non-autonomous Schrödinger-Bopp-Podolsky systemChun-Rong Jia0Lin Li1Shang-Jie Chen2School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing, ChinaSchool of Mathematics and Statistics & Chongqing Key Laboratory of Economic and Social Application Statistics,, Chongqing Technology and Business University, Chongqing, ChinaSchool of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing, ChinaIn this paper we study the existence of ground states solutions for non-autonomous Schrödinger–Bopp–Podolsky system \begin{equation*} \begin{cases} -\Delta u + u +\lambda K(x)\phi u = b(x)|u|^{p-2}u & \text{in} \ \mathbb{R}^{3}, \\ -\Delta \phi + a^2\Delta^2\phi = 4\pi K(x) u^{2} & \text{in}\ \mathbb{R}^{3}, \end{cases} \end{equation*} where $\lambda>0, 2<p\leq 4$ and both $K(x)$ and $b(x)$ are nonnegative functions in $\mathbb{R}^{3}$. Assuming that ${\lim_{\vert{x}\vert \to +\infty}}K(x)=K_\infty >0$ and ${\lim_{\vert{x}\vert \to +\infty}}b(x)=b_\infty >0$ and satisfying suitable assumptions, but not requiring any symmetry property on them. We show that the existence of a positive solution depends on the parameters $\lambda$ and $p$. We also establish the existence of ground state solutions for the case $3.18\approx\frac{1+\sqrt{73}}{3}<p\le{4}$.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=10041non-autonomous schrödinger–bopp–podolsky systemvariational methodspohožaev identitynehari manifold
spellingShingle Chun-Rong Jia
Lin Li
Shang-Jie Chen
Ground states solutions for some non-autonomous Schrödinger-Bopp-Podolsky system
Electronic Journal of Qualitative Theory of Differential Equations
non-autonomous schrödinger–bopp–podolsky system
variational methods
pohožaev identity
nehari manifold
title Ground states solutions for some non-autonomous Schrödinger-Bopp-Podolsky system
title_full Ground states solutions for some non-autonomous Schrödinger-Bopp-Podolsky system
title_fullStr Ground states solutions for some non-autonomous Schrödinger-Bopp-Podolsky system
title_full_unstemmed Ground states solutions for some non-autonomous Schrödinger-Bopp-Podolsky system
title_short Ground states solutions for some non-autonomous Schrödinger-Bopp-Podolsky system
title_sort ground states solutions for some non autonomous schrodinger bopp podolsky system
topic non-autonomous schrödinger–bopp–podolsky system
variational methods
pohožaev identity
nehari manifold
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=10041
work_keys_str_mv AT chunrongjia groundstatessolutionsforsomenonautonomousschrodingerbopppodolskysystem
AT linli groundstatessolutionsforsomenonautonomousschrodingerbopppodolskysystem
AT shangjiechen groundstatessolutionsforsomenonautonomousschrodingerbopppodolskysystem