Optimization of Natural Circulation District Heating Reactor Primary Heat Exchangers

Small modular reactors (SMRs) are gaining interest as a potential solution for cost-effective, carbon-neutral district heat (DH) production. The low pressures and temperatures permit much lighter and cheaper designs than in power plants, and efficiency is high as all heat generated can be sold to cu...

Full description

Bibliographic Details
Main Authors: Jussi Saari, Heikki Suikkanen, Clara Mendoza-Martinez, Juhani Hyvärinen
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/16/6/2739
_version_ 1797612134388989952
author Jussi Saari
Heikki Suikkanen
Clara Mendoza-Martinez
Juhani Hyvärinen
author_facet Jussi Saari
Heikki Suikkanen
Clara Mendoza-Martinez
Juhani Hyvärinen
author_sort Jussi Saari
collection DOAJ
description Small modular reactors (SMRs) are gaining interest as a potential solution for cost-effective, carbon-neutral district heat (DH) production. The low pressures and temperatures permit much lighter and cheaper designs than in power plants, and efficiency is high as all heat generated can be sold to customers. In this work, the optimization of the primary heat exchangers in a natural-circulation 50-MW heating reactor concept was carried out to obtain an initial feasibility estimate for the concept for both baseload and load-following operation, as well as to obtain information on the characteristics of an optimized design. Studies on small natural circulation heat-only SMRs and the impact of heat exchanger design on the overall dimensions and economics have not been published before. Although a detailed heat exchanger cost model was used, the results should be considered tentative initial estimates, as much of the cost impact from the heat exchanger design comes from the effect the design has on the pressure vessel dimensions. While more detailed pressure vessel designs and cost functions are needed for final optimization, the feasibility of the concept is shown. Optimization for different load profiles produced near-identical designs, with the downcomer divided approximately in half between the heat exchanger at the top and an empty space at the bottom to maximize the pressure difference available for natural circulation. Although conservative, even pessimistic estimates were used in the absence of detailed cost functions, cost prices of 30–55 EUR/MWh<sub>DH</sub> at a 10% interest rate were obtained, or only 20–40 EUR/MWh<sub>DH</sub> at a 5% interest rate. This indicates potentially good competitiveness for the considered DH SMR concept.
first_indexed 2024-03-11T06:37:06Z
format Article
id doaj.art-a21bfcaa67f84a96968a9b3fd12dc560
institution Directory Open Access Journal
issn 1996-1073
language English
last_indexed 2024-03-11T06:37:06Z
publishDate 2023-03-01
publisher MDPI AG
record_format Article
series Energies
spelling doaj.art-a21bfcaa67f84a96968a9b3fd12dc5602023-11-17T10:50:19ZengMDPI AGEnergies1996-10732023-03-01166273910.3390/en16062739Optimization of Natural Circulation District Heating Reactor Primary Heat ExchangersJussi Saari0Heikki Suikkanen1Clara Mendoza-Martinez2Juhani Hyvärinen3Department of Energy Technology, School of Energy Systems, Lappeenranta-Lahti University of Technology LUT, 53850 Lappeenranta, FinlandDepartment of Energy Technology, School of Energy Systems, Lappeenranta-Lahti University of Technology LUT, 53850 Lappeenranta, FinlandDepartment of Energy Technology, School of Energy Systems, Lappeenranta-Lahti University of Technology LUT, 53850 Lappeenranta, FinlandDepartment of Energy Technology, School of Energy Systems, Lappeenranta-Lahti University of Technology LUT, 53850 Lappeenranta, FinlandSmall modular reactors (SMRs) are gaining interest as a potential solution for cost-effective, carbon-neutral district heat (DH) production. The low pressures and temperatures permit much lighter and cheaper designs than in power plants, and efficiency is high as all heat generated can be sold to customers. In this work, the optimization of the primary heat exchangers in a natural-circulation 50-MW heating reactor concept was carried out to obtain an initial feasibility estimate for the concept for both baseload and load-following operation, as well as to obtain information on the characteristics of an optimized design. Studies on small natural circulation heat-only SMRs and the impact of heat exchanger design on the overall dimensions and economics have not been published before. Although a detailed heat exchanger cost model was used, the results should be considered tentative initial estimates, as much of the cost impact from the heat exchanger design comes from the effect the design has on the pressure vessel dimensions. While more detailed pressure vessel designs and cost functions are needed for final optimization, the feasibility of the concept is shown. Optimization for different load profiles produced near-identical designs, with the downcomer divided approximately in half between the heat exchanger at the top and an empty space at the bottom to maximize the pressure difference available for natural circulation. Although conservative, even pessimistic estimates were used in the absence of detailed cost functions, cost prices of 30–55 EUR/MWh<sub>DH</sub> at a 10% interest rate were obtained, or only 20–40 EUR/MWh<sub>DH</sub> at a 5% interest rate. This indicates potentially good competitiveness for the considered DH SMR concept.https://www.mdpi.com/1996-1073/16/6/2739small modular reactorsdistrict heatingshell-and-tube heat exchangersoptimizationcuckoo search
spellingShingle Jussi Saari
Heikki Suikkanen
Clara Mendoza-Martinez
Juhani Hyvärinen
Optimization of Natural Circulation District Heating Reactor Primary Heat Exchangers
Energies
small modular reactors
district heating
shell-and-tube heat exchangers
optimization
cuckoo search
title Optimization of Natural Circulation District Heating Reactor Primary Heat Exchangers
title_full Optimization of Natural Circulation District Heating Reactor Primary Heat Exchangers
title_fullStr Optimization of Natural Circulation District Heating Reactor Primary Heat Exchangers
title_full_unstemmed Optimization of Natural Circulation District Heating Reactor Primary Heat Exchangers
title_short Optimization of Natural Circulation District Heating Reactor Primary Heat Exchangers
title_sort optimization of natural circulation district heating reactor primary heat exchangers
topic small modular reactors
district heating
shell-and-tube heat exchangers
optimization
cuckoo search
url https://www.mdpi.com/1996-1073/16/6/2739
work_keys_str_mv AT jussisaari optimizationofnaturalcirculationdistrictheatingreactorprimaryheatexchangers
AT heikkisuikkanen optimizationofnaturalcirculationdistrictheatingreactorprimaryheatexchangers
AT claramendozamartinez optimizationofnaturalcirculationdistrictheatingreactorprimaryheatexchangers
AT juhanihyvarinen optimizationofnaturalcirculationdistrictheatingreactorprimaryheatexchangers