Blow up of the Solutions of Nonlinear Wave Equation

<p/> <p>We construct for every fixed <inline-formula><graphic file="1687-2770-2007-042954-i1.gif"/></inline-formula> the metric <inline-formula><graphic file="1687-2770-2007-042954-i2.gif"/></inline-formula>, where <inline-formul...

Full description

Bibliographic Details
Main Author: Georgiev Svetlin Georgiev
Format: Article
Language:English
Published: SpringerOpen 2007-01-01
Series:Boundary Value Problems
Online Access:http://www.boundaryvalueproblems.com/content/2007/042954
_version_ 1818369282405302272
author Georgiev Svetlin Georgiev
author_facet Georgiev Svetlin Georgiev
author_sort Georgiev Svetlin Georgiev
collection DOAJ
description <p/> <p>We construct for every fixed <inline-formula><graphic file="1687-2770-2007-042954-i1.gif"/></inline-formula> the metric <inline-formula><graphic file="1687-2770-2007-042954-i2.gif"/></inline-formula>, where <inline-formula><graphic file="1687-2770-2007-042954-i3.gif"/></inline-formula>, <inline-formula><graphic file="1687-2770-2007-042954-i4.gif"/></inline-formula>, <inline-formula><graphic file="1687-2770-2007-042954-i5.gif"/></inline-formula>, <inline-formula><graphic file="1687-2770-2007-042954-i6.gif"/></inline-formula>, are continuous functions, <inline-formula><graphic file="1687-2770-2007-042954-i7.gif"/></inline-formula>, for which we consider the Cauchy problem <inline-formula><graphic file="1687-2770-2007-042954-i8.gif"/></inline-formula>, where <inline-formula><graphic file="1687-2770-2007-042954-i9.gif"/></inline-formula>, <inline-formula><graphic file="1687-2770-2007-042954-i10.gif"/></inline-formula>; <inline-formula><graphic file="1687-2770-2007-042954-i11.gif"/></inline-formula>, <inline-formula><graphic file="1687-2770-2007-042954-i12.gif"/></inline-formula>, where <inline-formula><graphic file="1687-2770-2007-042954-i13.gif"/></inline-formula>, <inline-formula><graphic file="1687-2770-2007-042954-i14.gif"/></inline-formula>, <inline-formula><graphic file="1687-2770-2007-042954-i15.gif"/></inline-formula>, <inline-formula><graphic file="1687-2770-2007-042954-i16.gif"/></inline-formula>, <inline-formula><graphic file="1687-2770-2007-042954-i17.gif"/></inline-formula>, <inline-formula><graphic file="1687-2770-2007-042954-i18.gif"/></inline-formula>, <inline-formula><graphic file="1687-2770-2007-042954-i19.gif"/></inline-formula> and <inline-formula><graphic file="1687-2770-2007-042954-i20.gif"/></inline-formula> are positive constants. When <inline-formula><graphic file="1687-2770-2007-042954-i21.gif"/></inline-formula>, we prove that the above Cauchy problem has a nontrivial solution <inline-formula><graphic file="1687-2770-2007-042954-i22.gif"/></inline-formula> in the form <inline-formula><graphic file="1687-2770-2007-042954-i23.gif"/></inline-formula> for which <inline-formula><graphic file="1687-2770-2007-042954-i24.gif"/></inline-formula>. When <inline-formula><graphic file="1687-2770-2007-042954-i25.gif"/></inline-formula>, we prove that the above Cauchy problem has a nontrivial solution <inline-formula><graphic file="1687-2770-2007-042954-i26.gif"/></inline-formula> in the form <inline-formula><graphic file="1687-2770-2007-042954-i27.gif"/></inline-formula> for which <inline-formula><graphic file="1687-2770-2007-042954-i28.gif"/></inline-formula>.</p>
first_indexed 2024-12-13T23:21:22Z
format Article
id doaj.art-a21f8b4fd8b04deb9ef41be86a7b20a7
institution Directory Open Access Journal
issn 1687-2762
1687-2770
language English
last_indexed 2024-12-13T23:21:22Z
publishDate 2007-01-01
publisher SpringerOpen
record_format Article
series Boundary Value Problems
spelling doaj.art-a21f8b4fd8b04deb9ef41be86a7b20a72022-12-21T23:27:44ZengSpringerOpenBoundary Value Problems1687-27621687-27702007-01-0120071042954Blow up of the Solutions of Nonlinear Wave EquationGeorgiev Svetlin Georgiev<p/> <p>We construct for every fixed <inline-formula><graphic file="1687-2770-2007-042954-i1.gif"/></inline-formula> the metric <inline-formula><graphic file="1687-2770-2007-042954-i2.gif"/></inline-formula>, where <inline-formula><graphic file="1687-2770-2007-042954-i3.gif"/></inline-formula>, <inline-formula><graphic file="1687-2770-2007-042954-i4.gif"/></inline-formula>, <inline-formula><graphic file="1687-2770-2007-042954-i5.gif"/></inline-formula>, <inline-formula><graphic file="1687-2770-2007-042954-i6.gif"/></inline-formula>, are continuous functions, <inline-formula><graphic file="1687-2770-2007-042954-i7.gif"/></inline-formula>, for which we consider the Cauchy problem <inline-formula><graphic file="1687-2770-2007-042954-i8.gif"/></inline-formula>, where <inline-formula><graphic file="1687-2770-2007-042954-i9.gif"/></inline-formula>, <inline-formula><graphic file="1687-2770-2007-042954-i10.gif"/></inline-formula>; <inline-formula><graphic file="1687-2770-2007-042954-i11.gif"/></inline-formula>, <inline-formula><graphic file="1687-2770-2007-042954-i12.gif"/></inline-formula>, where <inline-formula><graphic file="1687-2770-2007-042954-i13.gif"/></inline-formula>, <inline-formula><graphic file="1687-2770-2007-042954-i14.gif"/></inline-formula>, <inline-formula><graphic file="1687-2770-2007-042954-i15.gif"/></inline-formula>, <inline-formula><graphic file="1687-2770-2007-042954-i16.gif"/></inline-formula>, <inline-formula><graphic file="1687-2770-2007-042954-i17.gif"/></inline-formula>, <inline-formula><graphic file="1687-2770-2007-042954-i18.gif"/></inline-formula>, <inline-formula><graphic file="1687-2770-2007-042954-i19.gif"/></inline-formula> and <inline-formula><graphic file="1687-2770-2007-042954-i20.gif"/></inline-formula> are positive constants. When <inline-formula><graphic file="1687-2770-2007-042954-i21.gif"/></inline-formula>, we prove that the above Cauchy problem has a nontrivial solution <inline-formula><graphic file="1687-2770-2007-042954-i22.gif"/></inline-formula> in the form <inline-formula><graphic file="1687-2770-2007-042954-i23.gif"/></inline-formula> for which <inline-formula><graphic file="1687-2770-2007-042954-i24.gif"/></inline-formula>. When <inline-formula><graphic file="1687-2770-2007-042954-i25.gif"/></inline-formula>, we prove that the above Cauchy problem has a nontrivial solution <inline-formula><graphic file="1687-2770-2007-042954-i26.gif"/></inline-formula> in the form <inline-formula><graphic file="1687-2770-2007-042954-i27.gif"/></inline-formula> for which <inline-formula><graphic file="1687-2770-2007-042954-i28.gif"/></inline-formula>.</p>http://www.boundaryvalueproblems.com/content/2007/042954
spellingShingle Georgiev Svetlin Georgiev
Blow up of the Solutions of Nonlinear Wave Equation
Boundary Value Problems
title Blow up of the Solutions of Nonlinear Wave Equation
title_full Blow up of the Solutions of Nonlinear Wave Equation
title_fullStr Blow up of the Solutions of Nonlinear Wave Equation
title_full_unstemmed Blow up of the Solutions of Nonlinear Wave Equation
title_short Blow up of the Solutions of Nonlinear Wave Equation
title_sort blow up of the solutions of nonlinear wave equation
url http://www.boundaryvalueproblems.com/content/2007/042954
work_keys_str_mv AT georgievsvetlingeorgiev blowupofthesolutionsofnonlinearwaveequation