Bacterial community diversity, lignocellulose components, and histological changes in composting using agricultural straws for Agaricus bisporus production

Agricultural straws (AS) may serve as potential base-substances in the production of Agaricus bisporus. Six AS that occur across China were investigated in a two-stage composting experiment; lignocellulose components, AS morphology, and the effects of different AS on mushroom yields from 2015–2017 w...

Full description

Bibliographic Details
Main Authors: Tingting Song, Yingyue Shen, Qunli Jin, Weilin Feng, Lijun Fan, Guangtian Cao, Weiming Cai
Format: Article
Language:English
Published: PeerJ Inc. 2021-02-01
Series:PeerJ
Subjects:
Online Access:https://peerj.com/articles/10452.pdf
Description
Summary:Agricultural straws (AS) may serve as potential base-substances in the production of Agaricus bisporus. Six AS that occur across China were investigated in a two-stage composting experiment; lignocellulose components, AS morphology, and the effects of different AS on mushroom yields from 2015–2017 were examined. In addition, microbial biodiversity and their impact on substrate degradation were studied using 16S gene sequenc based on six different AS on the 3rd (I.F), 6th (I.S), and 10th (I.T) day of Phase I, and Phase II (II). Results showed that the six different AS exhibited differences in the progression of degradation under the same compost condition; the wheat straw, rice straw, and cotton straw induced a significantly higher mushroom yield than did the others (P < 0.05); Thermobispora, Thermopolyspora, and Vulgatibacter genera may play an important role in the different AS degradations. According to our experiments, we can adjust formulations and compost methods to obtain high-yield mushroom compost based on different AS in the future.
ISSN:2167-8359