Semantic Segmentation of Sorghum Using Hyperspectral Data Identifies Genetic Associations
This study describes the evaluation of a range of approaches to semantic segmentation of hyperspectral images of sorghum plants, classifying each pixel as either nonplant or belonging to one of the three organ types (leaf, stalk, panicle). While many current methods for segmentation focus on separat...
المؤلفون الرئيسيون: | Chenyong Miao, Alejandro Pages, Zheng Xu, Eric Rodene, Jinliang Yang, James C. Schnable |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
American Association for the Advancement of Science (AAAS)
2020-01-01
|
سلاسل: | Plant Phenomics |
الوصول للمادة أونلاين: | http://dx.doi.org/10.34133/2020/4216373 |
مواد مشابهة
-
3D reconstruction identifies loci linked to variation in angle of individual sorghum leaves
حسب: Michael C. Tross, وآخرون
منشور في: (2021-12-01) -
A UAV‐based high‐throughput phenotyping approach to assess time‐series nitrogen responses and identify trait‐associated genetic components in maize
حسب: Eric Rodene, وآخرون
منشور في: (2022-01-01) -
Fully‐connected semantic segmentation of hyperspectral and LiDAR data
حسب: Hakan Aytaylan, وآخرون
منشور في: (2019-04-01) -
FUSION OF LIDAR AND HYPERSPECTRAL DATA FOR SEMANTIC SEGMENTATION OF FOREST TREE SPECIES
حسب: E. Tusa, وآخرون
منشور في: (2020-08-01) -
Image Filtering to Improve Maize Tassel Detection Accuracy Using Machine Learning Algorithms
حسب: Eric Rodene, وآخرون
منشور في: (2024-03-01)