Semantic Segmentation of Sorghum Using Hyperspectral Data Identifies Genetic Associations
This study describes the evaluation of a range of approaches to semantic segmentation of hyperspectral images of sorghum plants, classifying each pixel as either nonplant or belonging to one of the three organ types (leaf, stalk, panicle). While many current methods for segmentation focus on separat...
Autors principals: | Chenyong Miao, Alejandro Pages, Zheng Xu, Eric Rodene, Jinliang Yang, James C. Schnable |
---|---|
Format: | Article |
Idioma: | English |
Publicat: |
American Association for the Advancement of Science (AAAS)
2020-01-01
|
Col·lecció: | Plant Phenomics |
Accés en línia: | http://dx.doi.org/10.34133/2020/4216373 |
Ítems similars
-
3D reconstruction identifies loci linked to variation in angle of individual sorghum leaves
per: Michael C. Tross, et al.
Publicat: (2021-12-01) -
A UAV‐based high‐throughput phenotyping approach to assess time‐series nitrogen responses and identify trait‐associated genetic components in maize
per: Eric Rodene, et al.
Publicat: (2022-01-01) -
Fully‐connected semantic segmentation of hyperspectral and LiDAR data
per: Hakan Aytaylan, et al.
Publicat: (2019-04-01) -
FUSION OF LIDAR AND HYPERSPECTRAL DATA FOR SEMANTIC SEGMENTATION OF FOREST TREE SPECIES
per: E. Tusa, et al.
Publicat: (2020-08-01) -
Image Filtering to Improve Maize Tassel Detection Accuracy Using Machine Learning Algorithms
per: Eric Rodene, et al.
Publicat: (2024-03-01)