Semantic Segmentation of Sorghum Using Hyperspectral Data Identifies Genetic Associations
This study describes the evaluation of a range of approaches to semantic segmentation of hyperspectral images of sorghum plants, classifying each pixel as either nonplant or belonging to one of the three organ types (leaf, stalk, panicle). While many current methods for segmentation focus on separat...
Auteurs principaux: | Chenyong Miao, Alejandro Pages, Zheng Xu, Eric Rodene, Jinliang Yang, James C. Schnable |
---|---|
Format: | Article |
Langue: | English |
Publié: |
American Association for the Advancement of Science (AAAS)
2020-01-01
|
Collection: | Plant Phenomics |
Accès en ligne: | http://dx.doi.org/10.34133/2020/4216373 |
Documents similaires
-
3D reconstruction identifies loci linked to variation in angle of individual sorghum leaves
par: Michael C. Tross, et autres
Publié: (2021-12-01) -
A UAV‐based high‐throughput phenotyping approach to assess time‐series nitrogen responses and identify trait‐associated genetic components in maize
par: Eric Rodene, et autres
Publié: (2022-01-01) -
Fully‐connected semantic segmentation of hyperspectral and LiDAR data
par: Hakan Aytaylan, et autres
Publié: (2019-04-01) -
FUSION OF LIDAR AND HYPERSPECTRAL DATA FOR SEMANTIC SEGMENTATION OF FOREST TREE SPECIES
par: E. Tusa, et autres
Publié: (2020-08-01) -
Image Filtering to Improve Maize Tassel Detection Accuracy Using Machine Learning Algorithms
par: Eric Rodene, et autres
Publié: (2024-03-01)