Semantic Segmentation of Sorghum Using Hyperspectral Data Identifies Genetic Associations
This study describes the evaluation of a range of approaches to semantic segmentation of hyperspectral images of sorghum plants, classifying each pixel as either nonplant or belonging to one of the three organ types (leaf, stalk, panicle). While many current methods for segmentation focus on separat...
主要な著者: | Chenyong Miao, Alejandro Pages, Zheng Xu, Eric Rodene, Jinliang Yang, James C. Schnable |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
American Association for the Advancement of Science (AAAS)
2020-01-01
|
シリーズ: | Plant Phenomics |
オンライン・アクセス: | http://dx.doi.org/10.34133/2020/4216373 |
類似資料
-
3D reconstruction identifies loci linked to variation in angle of individual sorghum leaves
著者:: Michael C. Tross, 等
出版事項: (2021-12-01) -
A UAV‐based high‐throughput phenotyping approach to assess time‐series nitrogen responses and identify trait‐associated genetic components in maize
著者:: Eric Rodene, 等
出版事項: (2022-01-01) -
Fully‐connected semantic segmentation of hyperspectral and LiDAR data
著者:: Hakan Aytaylan, 等
出版事項: (2019-04-01) -
FUSION OF LIDAR AND HYPERSPECTRAL DATA FOR SEMANTIC SEGMENTATION OF FOREST TREE SPECIES
著者:: E. Tusa, 等
出版事項: (2020-08-01) -
Image Filtering to Improve Maize Tassel Detection Accuracy Using Machine Learning Algorithms
著者:: Eric Rodene, 等
出版事項: (2024-03-01)