Thermal stability of fullerenes from the C28-C50 series in a nitrogen atmosphere

In order to study the thermal stability of fullerenes Cn (n = 28, 32, 44, 50) in a nitrogen medium during the transition from the condensed phase to the gas phase and further reactions in the vapor phase, the method of thermodynamic modeling was used. Based on the results of the calculation, chemica...

Full description

Bibliographic Details
Main Authors: N.M. Barbin, L.V. Yakupova, D.I. Terent’yev
Format: Article
Language:Russian
Published: Tver State University 2023-12-01
Series:Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов
Subjects:
Online Access:https://physchemaspects.ru/2023/doi-10-26456-pcascnn-2023-15-350/?lang=en
Description
Summary:In order to study the thermal stability of fullerenes Cn (n = 28, 32, 44, 50) in a nitrogen medium during the transition from the condensed phase to the gas phase and further reactions in the vapor phase, the method of thermodynamic modeling was used. Based on the results of the calculation, chemical reactions in the Cn–N2 system were compiled and temperature intervals were identified for each reaction. In this work, a comparative study of the thermal stability ranges of Cn fullerenes in the condensed and gas phases has been carried out. As a result of heating, the physicochemical processes occurring in the carbon-nitrogen system are distinguished, which can be divided into three groups: reactions occurring in the condensed phase, between the condensed and gas phases, and sublimation with thermal dissociation. It is clearly demonstrated that with an increase in the number of carbon atoms in the condensed phase, fullerenes exhibit their thermal instability, in contrast to the solid solution of fullerenes. This study is one of a series of works devoted to the properties of nanoparticles in nitrogen atmosphere, which can be used in the development of new flame retardant compositions.
ISSN:2226-4442
2658-4360