Optimization of Vehicular Trajectories under Gaussian Noise Disturbances

Nowadays, research on Vehicular Technology aims at automating every single mechanical element of vehicles, in order to increase passengers’ safety, reduce human driving intervention and provide entertainment services on board. Automatic trajectory tracing for vehicles under especially risky circumst...

Full description

Bibliographic Details
Main Authors: Joan Garcia-Haro, Esteban Egea-Lopez, Juan-Bautista Tomas-Gabarron
Format: Article
Language:English
Published: MDPI AG 2012-12-01
Series:Future Internet
Subjects:
Online Access:http://www.mdpi.com/1999-5903/5/1/1
Description
Summary:Nowadays, research on Vehicular Technology aims at automating every single mechanical element of vehicles, in order to increase passengers’ safety, reduce human driving intervention and provide entertainment services on board. Automatic trajectory tracing for vehicles under especially risky circumstances is a field of research that is currently gaining enormous attention. In this paper, we show some results on how to develop useful policies to execute maneuvers by a vehicle at high speeds with the mathematical optimization of some already established mobility conditions of the car. We also study how the presence of Gaussian noise on measurement sensors while maneuvering can disturb motion and affect the final trajectories. Different performance criteria for the optimization of such maneuvers are presented, and an analysis is shown on how path deviations can be minimized by using trajectory smoothing techniques like the Kalman Filter. We finalize the paper with a discussion on how communications can be used to implement these schemes.
ISSN:1999-5903