High-Pressure Treatment of Chinese Fir Wood: Effect on Density, Mechanical Properties, Humidity-Related Moisture Migration, and Dimensional Stability

A new densification technique for industrial uses of plantation wood was studied. Chinese fir wood was treated by high pressure (HP) at 50 to 200 MPa for 5 min. The density and mechanical properties, moisture sorption isotherm (MSI), and dimensional changes of the pressure-treated wood under various...

Full description

Bibliographic Details
Main Authors: Huanhuan Li, Fengming Zhang, Hosahalli S. Ramaswamy, Songming Zhu, Yong Yu
Format: Article
Language:English
Published: North Carolina State University 2016-10-01
Series:BioResources
Subjects:
Online Access:http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_11_4_10497_Li_High_Pressure_Treatment_Chinese_Fir
Description
Summary:A new densification technique for industrial uses of plantation wood was studied. Chinese fir wood was treated by high pressure (HP) at 50 to 200 MPa for 5 min. The density and mechanical properties, moisture sorption isotherm (MSI), and dimensional changes of the pressure-treated wood under various relative humidity (RH) storage conditions were evaluated. The densities of HP-treated wood ranged from 0.79 ± 0.01 g/cm3 after treatment at 50 MPa to 0.92 ± 0.02 g/cm3 at 200 MPa, which was significantly higher (p < 0.05) than that of the control (0.35 ± 0.01 g/cm3). Hardness values in radial and tangential fiber alignment faces also significantly increased by 370% to 470% and 350% to 460%, respectively, as compared with the control. The modulus of elasticity and the modulus of rupture of pressure-treated wood increased by 48% to 88% and 89% to 170%, respectively. The equilibrium moisture content varied with RH, decreasing slightly at 33% and 52% while significantly increasing (p < 0.001) at 86% and 93% RH. Radial, tangential, and volumetric dimensions of densified wood were relatively stable at 33%, 52%, and 67% RH, while remarkable swelling occurred at 86% and 93% RH.
ISSN:1930-2126
1930-2126