Pendeteksian Outlier pada Regresi Nonlinier dengan Metode statistik Likelihood Displacement
Outlier is an observation that much different (extreme) from the other observational data, or data can be interpreted that do not follow the general pattern of the model. Sometimes outliers provide information that can not be provided by other data. That's why outliers should not just be elimin...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Mathematics Department UIN Maulana Malik Ibrahim Malang
2012-11-01
|
Series: | Cauchy: Jurnal Matematika Murni dan Aplikasi |
Subjects: | |
Online Access: | https://ejournal.uin-malang.ac.id/index.php/Math/article/view/3127 |
_version_ | 1811249747878477824 |
---|---|
author | Siti Tabi'atul Hasanah |
author_facet | Siti Tabi'atul Hasanah |
author_sort | Siti Tabi'atul Hasanah |
collection | DOAJ |
description | Outlier is an observation that much different (extreme) from the other observational data, or data can be interpreted that do not follow the general pattern of the model. Sometimes outliers provide information that can not be provided by other data. That's why outliers should not just be eliminated. Outliers can also be an influential observation. There are many methods that can be used to detect of outliers. In previous studies done on outlier detection of linear regression. Next will be developed detection of outliers in nonlinear regression. Nonlinear regression here is devoted to multiplicative nonlinear regression. To detect is use of statistical method likelihood displacement. Statistical methods abbreviated likelihood displacement (LD) is a method to detect outliers by removing the suspected outlier data. To estimate the parameters are used to the maximum likelihood method, so we get the estimate of the maximum. By using LD method is obtained i.e likelihood displacement is thought to contain outliers. Further accuracy of LD method in detecting the outliers are shown by comparing the MSE of LD with the MSE from the regression in general. Statistic test used is Λ. Initial hypothesis was rejected when proved so is an outlier. |
first_indexed | 2024-04-12T15:52:00Z |
format | Article |
id | doaj.art-a258fe9cb8744c2ead3bd1ed11d69762 |
institution | Directory Open Access Journal |
issn | 2086-0382 2477-3344 |
language | English |
last_indexed | 2024-04-12T15:52:00Z |
publishDate | 2012-11-01 |
publisher | Mathematics Department UIN Maulana Malik Ibrahim Malang |
record_format | Article |
series | Cauchy: Jurnal Matematika Murni dan Aplikasi |
spelling | doaj.art-a258fe9cb8744c2ead3bd1ed11d697622022-12-22T03:26:28ZengMathematics Department UIN Maulana Malik Ibrahim MalangCauchy: Jurnal Matematika Murni dan Aplikasi2086-03822477-33442012-11-012317718310.18860/ca.v2i3.31272766Pendeteksian Outlier pada Regresi Nonlinier dengan Metode statistik Likelihood DisplacementSiti Tabi'atul Hasanah0Mahasiswa Jurusan Matematika UIN Maulana Malik Ibrahim MalangOutlier is an observation that much different (extreme) from the other observational data, or data can be interpreted that do not follow the general pattern of the model. Sometimes outliers provide information that can not be provided by other data. That's why outliers should not just be eliminated. Outliers can also be an influential observation. There are many methods that can be used to detect of outliers. In previous studies done on outlier detection of linear regression. Next will be developed detection of outliers in nonlinear regression. Nonlinear regression here is devoted to multiplicative nonlinear regression. To detect is use of statistical method likelihood displacement. Statistical methods abbreviated likelihood displacement (LD) is a method to detect outliers by removing the suspected outlier data. To estimate the parameters are used to the maximum likelihood method, so we get the estimate of the maximum. By using LD method is obtained i.e likelihood displacement is thought to contain outliers. Further accuracy of LD method in detecting the outliers are shown by comparing the MSE of LD with the MSE from the regression in general. Statistic test used is Λ. Initial hypothesis was rejected when proved so is an outlier.https://ejournal.uin-malang.ac.id/index.php/Math/article/view/3127likelihood displacementmaximum likelihood estimationmultiplicative nonlinear regressionoutlier |
spellingShingle | Siti Tabi'atul Hasanah Pendeteksian Outlier pada Regresi Nonlinier dengan Metode statistik Likelihood Displacement Cauchy: Jurnal Matematika Murni dan Aplikasi likelihood displacement maximum likelihood estimation multiplicative nonlinear regression outlier |
title | Pendeteksian Outlier pada Regresi Nonlinier dengan Metode statistik Likelihood Displacement |
title_full | Pendeteksian Outlier pada Regresi Nonlinier dengan Metode statistik Likelihood Displacement |
title_fullStr | Pendeteksian Outlier pada Regresi Nonlinier dengan Metode statistik Likelihood Displacement |
title_full_unstemmed | Pendeteksian Outlier pada Regresi Nonlinier dengan Metode statistik Likelihood Displacement |
title_short | Pendeteksian Outlier pada Regresi Nonlinier dengan Metode statistik Likelihood Displacement |
title_sort | pendeteksian outlier pada regresi nonlinier dengan metode statistik likelihood displacement |
topic | likelihood displacement maximum likelihood estimation multiplicative nonlinear regression outlier |
url | https://ejournal.uin-malang.ac.id/index.php/Math/article/view/3127 |
work_keys_str_mv | AT sititabiatulhasanah pendeteksianoutlierpadaregresinonlinierdenganmetodestatistiklikelihooddisplacement |