A method of separating extracellular vesicles from blood shows potential clinical translation, and reveals extracellular vesicle cargo gremlin-1 as a diagnostic biomarker

Extracellular vesicles (EVs) have potential as minimally invasive biomarkers. However, the methods most commonly used for EV retrieval rely on ultracentrifugation, are time-consuming, and unrealistic to translate to standard-of-care. We sought a method suitable for EV separation from blood that coul...

Full description

Bibliographic Details
Main Authors: Niamh McNamee, Róisín Daly, John Crown, Lorraine O'Driscoll
Format: Article
Language:English
Published: Elsevier 2022-01-01
Series:Translational Oncology
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1936523321002655
Description
Summary:Extracellular vesicles (EVs) have potential as minimally invasive biomarkers. However, the methods most commonly used for EV retrieval rely on ultracentrifugation, are time-consuming, and unrealistic to translate to standard-of-care. We sought a method suitable for EV separation from blood that could be used in patient care. Sera from breast cancer patients and age-matched controls (n = 27 patients; n = 36 controls) were analysed to compare 6 proposed EV separation methods. The EVs were then characterised on 8 parameters. The selected method was subsequently applied to independent cohorts of sera (n = 20 patients; n = 20 controls), as proof-of-principle, investigating EVs’ gremlin-1 cargo. Three independent runs with each method were very reproducible, within each given method. All isolates contained EVs, although they varied in quantity and purity. Methods that require ultracentrifugation were not superior for low volumes of sera typically available in routine standard-of-care. A CD63/CD81/CD9-coated immunobead-based method was most suitable based on EV markers' detection and minimal albumin and lipoprotein contamination. Applying this method to independent sera cohorts, EVs and their gremlin-1 cargo were at significantly higher amounts for breast cancer patients compared to controls. In conclusion, CD63/CD81/CD9-coated immunobeads may enable clinical utility of blood-based EVs as biomarkers.
ISSN:1936-5233