A Self-Adaptive Multiple Exposure Image Fusion Method for Highly Reflective Surface Measurements

Fringe projection profilometry (FPP) has been extensively applied in various fields for its superior fast speed, high accuracy and high data density. However, measuring objects with highly reflective surfaces or high dynamic range surfaces remains challenging when using FPP. A number of multiple exp...

Full description

Bibliographic Details
Main Authors: Xiaobo Chen, Hui Du, Jinkai Zhang, Xiao Yang, Juntong Xi
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Machines
Subjects:
Online Access:https://www.mdpi.com/2075-1702/10/11/1004
Description
Summary:Fringe projection profilometry (FPP) has been extensively applied in various fields for its superior fast speed, high accuracy and high data density. However, measuring objects with highly reflective surfaces or high dynamic range surfaces remains challenging when using FPP. A number of multiple exposure image fusion methods have been proposed and successfully improved measurement performance for these kinds of objects. Normally, these methods have a relatively fixed sequence of exposure settings determined by practical experiences or trial and error experiments, which may decrease the efficiency of the entire measurement process and may have less robustness with regard to various environmental lighting conditions and object reflective properties. In this paper, a novel self-adaptive multiple exposure image fusion method is proposed with two areas of improvement relating to adaptively optimizing the initial exposure and the exposure sequence. First, by introducing the theory of information entropy, combined with an analysis of the characterization of fringe image entropy, an adaptive initial exposure searching method is proposed. Then, an exposure sequence generation method based on dichotomy is further described. On the basis of these two improvements, a novel self-adaptive multiple exposure image fusion method for FPP as well as its detailed procedures are provided. Experimental results validate the performance of the proposed self-adaptivity multiple exposure image fusion method via the measurement of objects with differences in surface reflectivity under different ambient lighting conditions.
ISSN:2075-1702