Kernel function and integral representations on Klein surfaces
Some representation theorems for the solutions of the Dirichlet problem and the Neumann problem on Klein surfaces are proved by using an analogue of the harmonic kernel function on symmetric Riemann surfaces.
Main Author: | Monica Rosiu |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2017-05-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2017/132/abstr.html |
Similar Items
-
Harmonic measures and Poisson kernels on Klein surfaces
by: Monica Rosiu
Published: (2017-10-01) -
The Poisson equation on Klein surfaces
by: Monica Rosiu
Published: (2016-04-01) -
Geodesics of quadratic differentials on Klein surfaces
by: Monica Rosiu
Published: (2014-04-01) -
Extremal length and Dirichlet problem on Klein surfaces
by: Monica Roşiu
Published: (2019-01-01) -
On the Supersymmetry of the Klein–Gordon Oscillator
by: Georg Junker
Published: (2021-05-01)