On Constructions of One-Lee Weight Codes Over Z₄

Let <inline-formula> <tex-math notation="LaTeX">$\mathbb {Z}_{4}$ </tex-math></inline-formula> be the integer ring of residue classes modulo 4. In this paper, we construct four infinite families of <inline-formula> <tex-math notation="LaTeX">$\...

Full description

Bibliographic Details
Main Authors: Zongbing Lin, Kaimin Cheng
Format: Article
Language:English
Published: IEEE 2021-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9548933/
Description
Summary:Let <inline-formula> <tex-math notation="LaTeX">$\mathbb {Z}_{4}$ </tex-math></inline-formula> be the integer ring of residue classes modulo 4. In this paper, we construct four infinite families of <inline-formula> <tex-math notation="LaTeX">$\mathbb {Z}_{4}$ </tex-math></inline-formula>-codes with one nonzero Lee weight by their generator matrices. Furthermore, we study the linearity of their Gray images and obtain a family of optimal binary codes.
ISSN:2169-3536