On Constructions of One-Lee Weight Codes Over Z₄
Let <inline-formula> <tex-math notation="LaTeX">$\mathbb {Z}_{4}$ </tex-math></inline-formula> be the integer ring of residue classes modulo 4. In this paper, we construct four infinite families of <inline-formula> <tex-math notation="LaTeX">$\...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2021-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9548933/ |
Summary: | Let <inline-formula> <tex-math notation="LaTeX">$\mathbb {Z}_{4}$ </tex-math></inline-formula> be the integer ring of residue classes modulo 4. In this paper, we construct four infinite families of <inline-formula> <tex-math notation="LaTeX">$\mathbb {Z}_{4}$ </tex-math></inline-formula>-codes with one nonzero Lee weight by their generator matrices. Furthermore, we study the linearity of their Gray images and obtain a family of optimal binary codes. |
---|---|
ISSN: | 2169-3536 |