Bioavailability of Colloidal Iron to Heterotrophic Bacteria in Sediments, and Effects on the Mobility of Colloid-Associated Metal(loid)s

The submicrometric fraction of surface sediments that accumulate in the bottom of dam reservoirs represent important sources of nutrients and contaminants in freshwater systems. However, assessing their stability in the presence of sediment bacteria as well as their bioavailability in the sediment r...

Full description

Bibliographic Details
Main Authors: Malgorzata Grybos, Delphine Masson, Pauline Gorgeon, Patrice Fondanèche, Nicolas Martin, Fabrice Dupuy, Emmanuel Joussein, Valentin Robin
Format: Article
Language:English
Published: MDPI AG 2022-06-01
Series:Minerals
Subjects:
Online Access:https://www.mdpi.com/2075-163X/12/7/812
Description
Summary:The submicrometric fraction of surface sediments that accumulate in the bottom of dam reservoirs represent important sources of nutrients and contaminants in freshwater systems. However, assessing their stability in the presence of sediment bacteria as well as their bioavailability in the sediment remains poorly understood. We hypothesized that sediment’s bacteria are able to extract nutrients from sedimentary colloids (<1 µm fraction) and thus contribute to the release of other colloid-associated elements to water. Experiments were performed under laboratory conditions, using the submicrometric fractions of sediments recovered from two dam reservoirs (in calcareous and crystalline granitic contexts) and two heterotrophic bacteria (Gram-negative <i>Pseudomonas</i> sp. and Gram-positive <i>Mycolicibacterium</i> sp.). The results demonstrated that bacteria were able to maintain their metabolic activity (the acidification of the growth medium and the production of organic ligands) in the presence of colloids as the sole source of iron (Fe) and regardless of their chemical composition. This demonstrates that bioavailable Fe, aside from ionic forms, can also occur in colloidal forms. However, the bacteria also catalyzed the release of potentially toxic metallic elements (such as Pb) associated with colloids. These results help improve our understanding of the processes that influence contaminants’ mobility in the ecosystems as well as provide an important insight into current research evaluating the bioavailability of different forms of nutrients.
ISSN:2075-163X