Partitioning of canopy and soil CO<sub>2</sub> fluxes in a pine forest at the dry timberline across a 13-year observation period

<p>Partitioning carbon fluxes is key to understanding the process underlying ecosystem response to change. This study used soil and canopy fluxes with stable isotopes (<span class="inline-formula"><sup>13</sup>C</span>) and radiocarbon (<span class="in...

Full description

Bibliographic Details
Main Authors: R. Qubaja, F. Tatarinov, E. Rotenberg, D. Yakir
Format: Article
Language:English
Published: Copernicus Publications 2020-02-01
Series:Biogeosciences
Online Access:https://www.biogeosciences.net/17/699/2020/bg-17-699-2020.pdf
_version_ 1819016933148721152
author R. Qubaja
F. Tatarinov
E. Rotenberg
D. Yakir
author_facet R. Qubaja
F. Tatarinov
E. Rotenberg
D. Yakir
author_sort R. Qubaja
collection DOAJ
description <p>Partitioning carbon fluxes is key to understanding the process underlying ecosystem response to change. This study used soil and canopy fluxes with stable isotopes (<span class="inline-formula"><sup>13</sup>C</span>) and radiocarbon (<span class="inline-formula"><sup>14</sup>C</span>) measurements in an 18&thinsp;km<span class="inline-formula"><sup>2</sup></span>, 50-year-old, dry (287&thinsp;mm mean annual precipitation; nonirrigated) <i>Pinus halepensis</i> forest plantation in Israel to partition the net ecosystem's <span class="inline-formula">CO<sub>2</sub></span> flux into gross primary productivity (GPP) and ecosystem respiration (<span class="inline-formula"><i>R</i><sub>e</sub></span>) and (with the aid of isotopic measurements) soil respiration flux (<span class="inline-formula"><i>R</i><sub>s</sub></span>) into autotrophic (<span class="inline-formula"><i>R</i><sub>sa</sub></span>), heterotrophic (<span class="inline-formula"><i>R</i><sub>h</sub></span>), and inorganic (<span class="inline-formula"><i>R</i><sub>i</sub></span>) components. On an annual scale, GPP and <span class="inline-formula"><i>R</i><sub>e</sub></span> were 655 and 488&thinsp;g&thinsp;C&thinsp;m<span class="inline-formula"><sup>−2</sup></span>, respectively, with a net primary productivity (NPP) of 282&thinsp;g&thinsp;C&thinsp;m<span class="inline-formula"><sup>−2</sup></span> and carbon-use efficiency (CUE&thinsp;<span class="inline-formula">=</span>&thinsp;NPP&thinsp;<span class="inline-formula">∕</span>&thinsp;GPP) of 0.43. <span class="inline-formula"><i>R</i><sub>s</sub></span> made up 60&thinsp;% of the <span class="inline-formula"><i>R</i><sub>e</sub></span> and comprised <span class="inline-formula">24±4</span>&thinsp;%<span class="inline-formula"><i>R</i><sub>sa</sub></span>, <span class="inline-formula">23±4</span>&thinsp;%<span class="inline-formula"><i>R</i><sub>h</sub></span>, and <span class="inline-formula">13±1</span>&thinsp;%<span class="inline-formula"><i>R</i><sub>i</sub></span>. The contribution of root and microbial respiration to <span class="inline-formula"><i>R</i><sub>e</sub></span> increased during high productivity periods, and inorganic sources were more significant components when the soil water content was low. Comparing the ratio of the respiration components to <span class="inline-formula"><i>R</i><sub>e</sub></span> of our mean 2016 values to those of 2003 (mean for 2001–2006) at the same site indicated a decrease in the autotrophic components (roots, foliage, and wood) by about <span class="inline-formula">−</span>13&thinsp;% and an increase in the heterotrophic component (<span class="inline-formula"><i>R</i><sub>h</sub>∕<i>R</i><sub>e</sub></span>) by about <span class="inline-formula">+</span>18&thinsp;%, with similar trends for soil respiration (<span class="inline-formula"><i>R</i><sub>sa</sub>∕<i>R</i><sub>s</sub></span> decreasing by <span class="inline-formula">−</span>19&thinsp;% and <span class="inline-formula"><i>R</i><sub>h</sub>∕<i>R</i><sub>s</sub></span> increasing by <span class="inline-formula">+</span>8&thinsp;%, respectively). The soil respiration sensitivity to temperature (<span class="inline-formula"><i>Q</i><sub>10</sub></span>) decreased across the same observation period by 36&thinsp;% and 9&thinsp;% in the wet and dry periods, respectively. Low rates of soil carbon loss combined with relatively high belowground carbon allocation (i.e., 38&thinsp;% of canopy <span class="inline-formula">CO<sub>2</sub></span> uptake) and low sensitivity to temperature help explain the high soil organic carbon accumulation and the relatively high ecosystem CUE of the dry forest.</p>
first_indexed 2024-12-21T02:55:30Z
format Article
id doaj.art-a2b04540a4204591b28a79b19ef6a89d
institution Directory Open Access Journal
issn 1726-4170
1726-4189
language English
last_indexed 2024-12-21T02:55:30Z
publishDate 2020-02-01
publisher Copernicus Publications
record_format Article
series Biogeosciences
spelling doaj.art-a2b04540a4204591b28a79b19ef6a89d2022-12-21T19:18:21ZengCopernicus PublicationsBiogeosciences1726-41701726-41892020-02-011769971410.5194/bg-17-699-2020Partitioning of canopy and soil CO<sub>2</sub> fluxes in a pine forest at the dry timberline across a 13-year observation periodR. QubajaF. TatarinovE. RotenbergD. Yakir<p>Partitioning carbon fluxes is key to understanding the process underlying ecosystem response to change. This study used soil and canopy fluxes with stable isotopes (<span class="inline-formula"><sup>13</sup>C</span>) and radiocarbon (<span class="inline-formula"><sup>14</sup>C</span>) measurements in an 18&thinsp;km<span class="inline-formula"><sup>2</sup></span>, 50-year-old, dry (287&thinsp;mm mean annual precipitation; nonirrigated) <i>Pinus halepensis</i> forest plantation in Israel to partition the net ecosystem's <span class="inline-formula">CO<sub>2</sub></span> flux into gross primary productivity (GPP) and ecosystem respiration (<span class="inline-formula"><i>R</i><sub>e</sub></span>) and (with the aid of isotopic measurements) soil respiration flux (<span class="inline-formula"><i>R</i><sub>s</sub></span>) into autotrophic (<span class="inline-formula"><i>R</i><sub>sa</sub></span>), heterotrophic (<span class="inline-formula"><i>R</i><sub>h</sub></span>), and inorganic (<span class="inline-formula"><i>R</i><sub>i</sub></span>) components. On an annual scale, GPP and <span class="inline-formula"><i>R</i><sub>e</sub></span> were 655 and 488&thinsp;g&thinsp;C&thinsp;m<span class="inline-formula"><sup>−2</sup></span>, respectively, with a net primary productivity (NPP) of 282&thinsp;g&thinsp;C&thinsp;m<span class="inline-formula"><sup>−2</sup></span> and carbon-use efficiency (CUE&thinsp;<span class="inline-formula">=</span>&thinsp;NPP&thinsp;<span class="inline-formula">∕</span>&thinsp;GPP) of 0.43. <span class="inline-formula"><i>R</i><sub>s</sub></span> made up 60&thinsp;% of the <span class="inline-formula"><i>R</i><sub>e</sub></span> and comprised <span class="inline-formula">24±4</span>&thinsp;%<span class="inline-formula"><i>R</i><sub>sa</sub></span>, <span class="inline-formula">23±4</span>&thinsp;%<span class="inline-formula"><i>R</i><sub>h</sub></span>, and <span class="inline-formula">13±1</span>&thinsp;%<span class="inline-formula"><i>R</i><sub>i</sub></span>. The contribution of root and microbial respiration to <span class="inline-formula"><i>R</i><sub>e</sub></span> increased during high productivity periods, and inorganic sources were more significant components when the soil water content was low. Comparing the ratio of the respiration components to <span class="inline-formula"><i>R</i><sub>e</sub></span> of our mean 2016 values to those of 2003 (mean for 2001–2006) at the same site indicated a decrease in the autotrophic components (roots, foliage, and wood) by about <span class="inline-formula">−</span>13&thinsp;% and an increase in the heterotrophic component (<span class="inline-formula"><i>R</i><sub>h</sub>∕<i>R</i><sub>e</sub></span>) by about <span class="inline-formula">+</span>18&thinsp;%, with similar trends for soil respiration (<span class="inline-formula"><i>R</i><sub>sa</sub>∕<i>R</i><sub>s</sub></span> decreasing by <span class="inline-formula">−</span>19&thinsp;% and <span class="inline-formula"><i>R</i><sub>h</sub>∕<i>R</i><sub>s</sub></span> increasing by <span class="inline-formula">+</span>8&thinsp;%, respectively). The soil respiration sensitivity to temperature (<span class="inline-formula"><i>Q</i><sub>10</sub></span>) decreased across the same observation period by 36&thinsp;% and 9&thinsp;% in the wet and dry periods, respectively. Low rates of soil carbon loss combined with relatively high belowground carbon allocation (i.e., 38&thinsp;% of canopy <span class="inline-formula">CO<sub>2</sub></span> uptake) and low sensitivity to temperature help explain the high soil organic carbon accumulation and the relatively high ecosystem CUE of the dry forest.</p>https://www.biogeosciences.net/17/699/2020/bg-17-699-2020.pdf
spellingShingle R. Qubaja
F. Tatarinov
E. Rotenberg
D. Yakir
Partitioning of canopy and soil CO<sub>2</sub> fluxes in a pine forest at the dry timberline across a 13-year observation period
Biogeosciences
title Partitioning of canopy and soil CO<sub>2</sub> fluxes in a pine forest at the dry timberline across a 13-year observation period
title_full Partitioning of canopy and soil CO<sub>2</sub> fluxes in a pine forest at the dry timberline across a 13-year observation period
title_fullStr Partitioning of canopy and soil CO<sub>2</sub> fluxes in a pine forest at the dry timberline across a 13-year observation period
title_full_unstemmed Partitioning of canopy and soil CO<sub>2</sub> fluxes in a pine forest at the dry timberline across a 13-year observation period
title_short Partitioning of canopy and soil CO<sub>2</sub> fluxes in a pine forest at the dry timberline across a 13-year observation period
title_sort partitioning of canopy and soil co sub 2 sub fluxes in a pine forest at the dry timberline across a 13 year observation period
url https://www.biogeosciences.net/17/699/2020/bg-17-699-2020.pdf
work_keys_str_mv AT rqubaja partitioningofcanopyandsoilcosub2subfluxesinapineforestatthedrytimberlineacrossa13yearobservationperiod
AT ftatarinov partitioningofcanopyandsoilcosub2subfluxesinapineforestatthedrytimberlineacrossa13yearobservationperiod
AT erotenberg partitioningofcanopyandsoilcosub2subfluxesinapineforestatthedrytimberlineacrossa13yearobservationperiod
AT dyakir partitioningofcanopyandsoilcosub2subfluxesinapineforestatthedrytimberlineacrossa13yearobservationperiod