A comprehensive review of stacking methods for semantic similarity measurement

This article presents a comprehensive review of stacking methods commonly used to address the challenge of automatic semantic similarity measurement in the literature. Since more than two decades of research have left various semantic similarity measures, scientists and practitioners often find many...

Full description

Bibliographic Details
Main Author: Jorge Martinez-Gil
Format: Article
Language:English
Published: Elsevier 2022-12-01
Series:Machine Learning with Applications
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2666827022000986
Description
Summary:This article presents a comprehensive review of stacking methods commonly used to address the challenge of automatic semantic similarity measurement in the literature. Since more than two decades of research have left various semantic similarity measures, scientists and practitioners often find many difficulties in choosing the best method to put into production. For this reason, a novel generation of strategies has been proposed to use basic semantic similarity measures using base estimators to achieve a better performance than could be gained from any of the semantic similarity measures. In this work, we analyze different stacking techniques, ranging from the classical algebraic methods to the most powerful ones based on hybridization, including blending, neural, fuzzy, and genetic-based stacking. Each technique excels in aspects such as simplicity, robustness, accuracy, interpretability, transferability, or a favorable combination of several of those aspects. The goal is that the reader can have an overview of the state-of-the-art in this field.
ISSN:2666-8270