Synthesis and Characterization of a Composite Anion Exchange Membrane for Water Electrolyzers (AEMWE)

Anion exchange membranes (AEM) have gained attention recently as a promising candidate for low-cost water electrolysis systems to produce hydrogen, linked with renewable energy resources as a sustainable alternative to fossil fuels. The development of potential materials for producing and analyzing...

Full description

Bibliographic Details
Main Authors: Somayyeh Rakhshani, Rodolfo Araneo, Andrea Pucci, Antonio Rinaldi, Chiara Giuliani, Alfonso Pozio
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Membranes
Subjects:
Online Access:https://www.mdpi.com/2077-0375/13/1/109
Description
Summary:Anion exchange membranes (AEM) have gained attention recently as a promising candidate for low-cost water electrolysis systems to produce hydrogen, linked with renewable energy resources as a sustainable alternative to fossil fuels. The development of potential materials for producing and analyzing AEM is an imperative step towards commercialization and plays a competitive role in the hydrogen production industry. In this article, we developed a composite anion exchange membrane prepared by activating a commercial support structure (Celgard<sup>®</sup> 3401) with a commercially available functional group (Fumion<sup>®</sup> FAA-3) through a phase-inversion process. Fourier-transform infrared spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) analysis demonstrated the phase-inversion procedure as an effective methodology. Furthermore, the cell performance test result (with Celgard/Fumion) was very promising and even better in comparison with a commercial membrane commonly applied in alkaline electrolysis (Fumasep). We also developed a testing procedure for membrane performance evaluation during electrolysis which is very critical considering the effect of CO<sub>2</sub> absorption on membrane conductivity.
ISSN:2077-0375