Mechanochemical Synergism of Reactive Oxygen Species Influences on RBC Membrane

The influences of various factors on blood lead to the formation of extra reactive oxygen species (ROS), resulting in the disruption of morphology and functions of red blood cells (RBCs). This study considers the mechanisms of the mechanochemical synergism of <inline-formula><math xmlns=&qu...

Full description

Bibliographic Details
Main Authors: Elena Kozlova, Viktoria Sergunova, Ekaterina Sherstyukova, Andrey Grechko, Snezhanna Lyapunova, Vladimir Inozemtsev, Aleksandr Kozlov, Olga Gudkova, Aleksandr Chernysh
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/24/6/5952
_version_ 1797611185205411840
author Elena Kozlova
Viktoria Sergunova
Ekaterina Sherstyukova
Andrey Grechko
Snezhanna Lyapunova
Vladimir Inozemtsev
Aleksandr Kozlov
Olga Gudkova
Aleksandr Chernysh
author_facet Elena Kozlova
Viktoria Sergunova
Ekaterina Sherstyukova
Andrey Grechko
Snezhanna Lyapunova
Vladimir Inozemtsev
Aleksandr Kozlov
Olga Gudkova
Aleksandr Chernysh
author_sort Elena Kozlova
collection DOAJ
description The influences of various factors on blood lead to the formation of extra reactive oxygen species (ROS), resulting in the disruption of morphology and functions of red blood cells (RBCs). This study considers the mechanisms of the mechanochemical synergism of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><msup><mi>H</mi><mo>•</mo></msup></mrow></semantics></math></inline-formula> free radicals, which are most active in the initiation of lipid peroxidation (LPO) in RBC membranes, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>H</mi><mn>2</mn></msub><msub><mi>O</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> molecules, the largest typical diffusion path. Using kinetic models of differential equations describing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mrow><msub><mi>H</mi><mn>2</mn></msub><msub><mi>O</mi><mn>2</mn></msub></mrow></msub><mfenced><mi>t</mi></mfenced><mo> </mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mrow><mi>O</mi><msup><mi>H</mi><mo>•</mo></msup></mrow></msub><mfenced><mi>t</mi></mfenced></mrow></semantics></math></inline-formula>, we discuss two levels of mechanochemical synergism that occur simultaneously: (1) synergism that ensures the delivery of highly active free radicals <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><msup><mi>H</mi><mo>•</mo></msup></mrow></semantics></math></inline-formula> to RBC membranes and (2) a positive feedback system between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>H</mi><mn>2</mn></msub><msub><mi>O</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><msup><mi>H</mi><mo>•</mo></msup></mrow></semantics></math></inline-formula>, resulting in the partial restoration of spent molecules. As a result of these ROS synergisms, the efficiency of LPO in RBC membranes sharply increases. In blood, the appearance of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><msup><mi>H</mi><mo>•</mo></msup></mrow></semantics></math></inline-formula> free radicals is due to the interaction of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>H</mi><mn>2</mn></msub><msub><mi>O</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> molecules with free iron ions (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><msup><mi>e</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup></mrow></semantics></math></inline-formula>) which arise as a result of heme degradation. We experimentally established the quantitative dependences of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mrow><mi>O</mi><msup><mi>H</mi><mo>•</mo></msup><mo> </mo></mrow></msub><mfenced><mrow><msub><mi>C</mi><mrow><msub><mi>H</mi><mn>2</mn></msub><msub><mi>O</mi><mn>2</mn></msub></mrow></msub></mrow></mfenced></mrow></semantics></math></inline-formula> using the methods of spectrophotometry and nonlinear curve fitting. This study extends the analysis of the influence of ROS mechanisms in RBC suspensions.
first_indexed 2024-03-11T06:24:16Z
format Article
id doaj.art-a2b91e9440304452a855295f3aaf63fe
institution Directory Open Access Journal
issn 1661-6596
1422-0067
language English
last_indexed 2024-03-11T06:24:16Z
publishDate 2023-03-01
publisher MDPI AG
record_format Article
series International Journal of Molecular Sciences
spelling doaj.art-a2b91e9440304452a855295f3aaf63fe2023-11-17T11:41:25ZengMDPI AGInternational Journal of Molecular Sciences1661-65961422-00672023-03-01246595210.3390/ijms24065952Mechanochemical Synergism of Reactive Oxygen Species Influences on RBC MembraneElena Kozlova0Viktoria Sergunova1Ekaterina Sherstyukova2Andrey Grechko3Snezhanna Lyapunova4Vladimir Inozemtsev5Aleksandr Kozlov6Olga Gudkova7Aleksandr Chernysh8Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, RussiaLaboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, RussiaLaboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, RussiaAdministration, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, RussiaLaboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, RussiaLaboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, RussiaDepartment of Medical and Biological Physics, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, RussiaLaboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, RussiaLaboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, RussiaThe influences of various factors on blood lead to the formation of extra reactive oxygen species (ROS), resulting in the disruption of morphology and functions of red blood cells (RBCs). This study considers the mechanisms of the mechanochemical synergism of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><msup><mi>H</mi><mo>•</mo></msup></mrow></semantics></math></inline-formula> free radicals, which are most active in the initiation of lipid peroxidation (LPO) in RBC membranes, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>H</mi><mn>2</mn></msub><msub><mi>O</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> molecules, the largest typical diffusion path. Using kinetic models of differential equations describing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mrow><msub><mi>H</mi><mn>2</mn></msub><msub><mi>O</mi><mn>2</mn></msub></mrow></msub><mfenced><mi>t</mi></mfenced><mo> </mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mrow><mi>O</mi><msup><mi>H</mi><mo>•</mo></msup></mrow></msub><mfenced><mi>t</mi></mfenced></mrow></semantics></math></inline-formula>, we discuss two levels of mechanochemical synergism that occur simultaneously: (1) synergism that ensures the delivery of highly active free radicals <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><msup><mi>H</mi><mo>•</mo></msup></mrow></semantics></math></inline-formula> to RBC membranes and (2) a positive feedback system between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>H</mi><mn>2</mn></msub><msub><mi>O</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><msup><mi>H</mi><mo>•</mo></msup></mrow></semantics></math></inline-formula>, resulting in the partial restoration of spent molecules. As a result of these ROS synergisms, the efficiency of LPO in RBC membranes sharply increases. In blood, the appearance of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><msup><mi>H</mi><mo>•</mo></msup></mrow></semantics></math></inline-formula> free radicals is due to the interaction of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>H</mi><mn>2</mn></msub><msub><mi>O</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> molecules with free iron ions (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><msup><mi>e</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup></mrow></semantics></math></inline-formula>) which arise as a result of heme degradation. We experimentally established the quantitative dependences of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mrow><mi>O</mi><msup><mi>H</mi><mo>•</mo></msup><mo> </mo></mrow></msub><mfenced><mrow><msub><mi>C</mi><mrow><msub><mi>H</mi><mn>2</mn></msub><msub><mi>O</mi><mn>2</mn></msub></mrow></msub></mrow></mfenced></mrow></semantics></math></inline-formula> using the methods of spectrophotometry and nonlinear curve fitting. This study extends the analysis of the influence of ROS mechanisms in RBC suspensions.https://www.mdpi.com/1422-0067/24/6/5952RBC membranesROSmechanochemical synergismkinetic modelhydroxyl radicalhydrogen peroxide
spellingShingle Elena Kozlova
Viktoria Sergunova
Ekaterina Sherstyukova
Andrey Grechko
Snezhanna Lyapunova
Vladimir Inozemtsev
Aleksandr Kozlov
Olga Gudkova
Aleksandr Chernysh
Mechanochemical Synergism of Reactive Oxygen Species Influences on RBC Membrane
International Journal of Molecular Sciences
RBC membranes
ROS
mechanochemical synergism
kinetic model
hydroxyl radical
hydrogen peroxide
title Mechanochemical Synergism of Reactive Oxygen Species Influences on RBC Membrane
title_full Mechanochemical Synergism of Reactive Oxygen Species Influences on RBC Membrane
title_fullStr Mechanochemical Synergism of Reactive Oxygen Species Influences on RBC Membrane
title_full_unstemmed Mechanochemical Synergism of Reactive Oxygen Species Influences on RBC Membrane
title_short Mechanochemical Synergism of Reactive Oxygen Species Influences on RBC Membrane
title_sort mechanochemical synergism of reactive oxygen species influences on rbc membrane
topic RBC membranes
ROS
mechanochemical synergism
kinetic model
hydroxyl radical
hydrogen peroxide
url https://www.mdpi.com/1422-0067/24/6/5952
work_keys_str_mv AT elenakozlova mechanochemicalsynergismofreactiveoxygenspeciesinfluencesonrbcmembrane
AT viktoriasergunova mechanochemicalsynergismofreactiveoxygenspeciesinfluencesonrbcmembrane
AT ekaterinasherstyukova mechanochemicalsynergismofreactiveoxygenspeciesinfluencesonrbcmembrane
AT andreygrechko mechanochemicalsynergismofreactiveoxygenspeciesinfluencesonrbcmembrane
AT snezhannalyapunova mechanochemicalsynergismofreactiveoxygenspeciesinfluencesonrbcmembrane
AT vladimirinozemtsev mechanochemicalsynergismofreactiveoxygenspeciesinfluencesonrbcmembrane
AT aleksandrkozlov mechanochemicalsynergismofreactiveoxygenspeciesinfluencesonrbcmembrane
AT olgagudkova mechanochemicalsynergismofreactiveoxygenspeciesinfluencesonrbcmembrane
AT aleksandrchernysh mechanochemicalsynergismofreactiveoxygenspeciesinfluencesonrbcmembrane