Cooperative and noncooperative magnetization reversal in alnicos

It is investigated how magnetostatic interactions affect the coercivity of alnico-type magnets. Starting from exact micromagnetic relations, we analyze two limits, namely cooperative reversal processes operative on short lengths scales and noncooperative reversal processes on long length scales. In...

Full description

Bibliographic Details
Main Authors: Ralph Skomski, Liqin Ke, Matthew J. Kramer, Iver E. Anderson, C. Z. Wang, W. Y. Zhang, Jeff E. Shield, D. J. Sellmyer
Format: Article
Language:English
Published: AIP Publishing LLC 2017-05-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/1.4976216
Description
Summary:It is investigated how magnetostatic interactions affect the coercivity of alnico-type magnets. Starting from exact micromagnetic relations, we analyze two limits, namely cooperative reversal processes operative on short lengths scales and noncooperative reversal processes on long length scales. In alnicos, intrawire interactions are predominantly cooperative, whereas interwire effects are typically noncooperative. However, the transition between the regimes depends on feature size and hysteresis-loop shape, and interwire cooperative effects are largest for nearly rectangular loops. Our analysis revises the common shape-anisotropy interpretation of alnicos.
ISSN:2158-3226