Quantitative logging data clustering with hidden Markov model to assist log unit classification
Abstract Revealing subsurface structures is a fundamental task in geophysical and geological studies. Logging data are usually acquired through drilling projects, which constrain the subsurface structure, and together with the description of drill core samples, are used to distinguish geological uni...
Main Authors: | Suguru Yabe, Yohei Hamada, Rina Fukuchi, Shunichi Nomura, Norio Shigematsu, Tsutomu Kiguchi, Kenta Ueki |
---|---|
格式: | Article |
語言: | English |
出版: |
SpringerOpen
2022-06-01
|
叢編: | Earth, Planets and Space |
主題: | |
在線閱讀: | https://doi.org/10.1186/s40623-022-01651-0 |
相似書籍
-
Simultaneous estimation of in situ porosity and thermal structure from core sample measurements and resistivity log data at Nankai accretionary prism
由: Suguru Yabe, et al.
出版: (2019-11-01) -
Feature Selection for Hidden Markov Models and Hidden Semi-Markov Models
由: Stephen Adams, et al.
出版: (2016-01-01) -
Visual tracking using interactive factorial hidden Markov models
由: Jin Wook Paeng, et al.
出版: (2021-08-01) -
UTILIZING DISCRETE HIDDEN MARKOV MODELS TO ANALYZE TETRAPLOID PLANT BREEDING
由: Nahrul Hayati, et al.
出版: (2024-10-01) -
Stochastic Modeling with Poisson Hidden Markov in Hepatitis B Cases
由: Ersya Nurul Fairuz, et al.
出版: (2024-11-01)