Quantitative logging data clustering with hidden Markov model to assist log unit classification
Abstract Revealing subsurface structures is a fundamental task in geophysical and geological studies. Logging data are usually acquired through drilling projects, which constrain the subsurface structure, and together with the description of drill core samples, are used to distinguish geological uni...
المؤلفون الرئيسيون: | Suguru Yabe, Yohei Hamada, Rina Fukuchi, Shunichi Nomura, Norio Shigematsu, Tsutomu Kiguchi, Kenta Ueki |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
SpringerOpen
2022-06-01
|
سلاسل: | Earth, Planets and Space |
الموضوعات: | |
الوصول للمادة أونلاين: | https://doi.org/10.1186/s40623-022-01651-0 |
مواد مشابهة
-
Simultaneous estimation of in situ porosity and thermal structure from core sample measurements and resistivity log data at Nankai accretionary prism
حسب: Suguru Yabe, وآخرون
منشور في: (2019-11-01) -
Feature Selection for Hidden Markov Models and Hidden Semi-Markov Models
حسب: Stephen Adams, وآخرون
منشور في: (2016-01-01) -
Visual tracking using interactive factorial hidden Markov models
حسب: Jin Wook Paeng, وآخرون
منشور في: (2021-08-01) -
UTILIZING DISCRETE HIDDEN MARKOV MODELS TO ANALYZE TETRAPLOID PLANT BREEDING
حسب: Nahrul Hayati, وآخرون
منشور في: (2024-10-01) -
Stochastic Modeling with Poisson Hidden Markov in Hepatitis B Cases
حسب: Ersya Nurul Fairuz, وآخرون
منشور في: (2024-11-01)