Quantitative logging data clustering with hidden Markov model to assist log unit classification
Abstract Revealing subsurface structures is a fundamental task in geophysical and geological studies. Logging data are usually acquired through drilling projects, which constrain the subsurface structure, and together with the description of drill core samples, are used to distinguish geological uni...
Auteurs principaux: | Suguru Yabe, Yohei Hamada, Rina Fukuchi, Shunichi Nomura, Norio Shigematsu, Tsutomu Kiguchi, Kenta Ueki |
---|---|
Format: | Article |
Langue: | English |
Publié: |
SpringerOpen
2022-06-01
|
Collection: | Earth, Planets and Space |
Sujets: | |
Accès en ligne: | https://doi.org/10.1186/s40623-022-01651-0 |
Documents similaires
-
A new method for the empirical conversion of logging data to clay mineral fraction in the Nankai accretionary prism
par: Suguru Yabe, et autres
Publié: (2020-10-01) -
Simultaneous estimation of in situ porosity and thermal structure from core sample measurements and resistivity log data at Nankai accretionary prism
par: Suguru Yabe, et autres
Publié: (2019-11-01) -
Feature Selection for Hidden Markov Models and Hidden Semi-Markov Models
par: Stephen Adams, et autres
Publié: (2016-01-01) -
Visual tracking using interactive factorial hidden Markov models
par: Jin Wook Paeng, et autres
Publié: (2021-08-01) -
UTILIZING DISCRETE HIDDEN MARKOV MODELS TO ANALYZE TETRAPLOID PLANT BREEDING
par: Nahrul Hayati, et autres
Publié: (2024-10-01)