Quantitative logging data clustering with hidden Markov model to assist log unit classification
Abstract Revealing subsurface structures is a fundamental task in geophysical and geological studies. Logging data are usually acquired through drilling projects, which constrain the subsurface structure, and together with the description of drill core samples, are used to distinguish geological uni...
Main Authors: | Suguru Yabe, Yohei Hamada, Rina Fukuchi, Shunichi Nomura, Norio Shigematsu, Tsutomu Kiguchi, Kenta Ueki |
---|---|
פורמט: | Article |
שפה: | English |
יצא לאור: |
SpringerOpen
2022-06-01
|
סדרה: | Earth, Planets and Space |
נושאים: | |
גישה מקוונת: | https://doi.org/10.1186/s40623-022-01651-0 |
פריטים דומים
-
A new method for the empirical conversion of logging data to clay mineral fraction in the Nankai accretionary prism
מאת: Suguru Yabe, et al.
יצא לאור: (2020-10-01) -
Simultaneous estimation of in situ porosity and thermal structure from core sample measurements and resistivity log data at Nankai accretionary prism
מאת: Suguru Yabe, et al.
יצא לאור: (2019-11-01) -
Feature Selection for Hidden Markov Models and Hidden Semi-Markov Models
מאת: Stephen Adams, et al.
יצא לאור: (2016-01-01) -
Visual tracking using interactive factorial hidden Markov models
מאת: Jin Wook Paeng, et al.
יצא לאור: (2021-08-01) -
UTILIZING DISCRETE HIDDEN MARKOV MODELS TO ANALYZE TETRAPLOID PLANT BREEDING
מאת: Nahrul Hayati, et al.
יצא לאור: (2024-10-01)