Quantitative logging data clustering with hidden Markov model to assist log unit classification
Abstract Revealing subsurface structures is a fundamental task in geophysical and geological studies. Logging data are usually acquired through drilling projects, which constrain the subsurface structure, and together with the description of drill core samples, are used to distinguish geological uni...
主要な著者: | Suguru Yabe, Yohei Hamada, Rina Fukuchi, Shunichi Nomura, Norio Shigematsu, Tsutomu Kiguchi, Kenta Ueki |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
SpringerOpen
2022-06-01
|
シリーズ: | Earth, Planets and Space |
主題: | |
オンライン・アクセス: | https://doi.org/10.1186/s40623-022-01651-0 |
類似資料
-
A new method for the empirical conversion of logging data to clay mineral fraction in the Nankai accretionary prism
著者:: Suguru Yabe, 等
出版事項: (2020-10-01) -
Simultaneous estimation of in situ porosity and thermal structure from core sample measurements and resistivity log data at Nankai accretionary prism
著者:: Suguru Yabe, 等
出版事項: (2019-11-01) -
Feature Selection for Hidden Markov Models and Hidden Semi-Markov Models
著者:: Stephen Adams, 等
出版事項: (2016-01-01) -
Visual tracking using interactive factorial hidden Markov models
著者:: Jin Wook Paeng, 等
出版事項: (2021-08-01) -
UTILIZING DISCRETE HIDDEN MARKOV MODELS TO ANALYZE TETRAPLOID PLANT BREEDING
著者:: Nahrul Hayati, 等
出版事項: (2024-10-01)