Quantitative logging data clustering with hidden Markov model to assist log unit classification
Abstract Revealing subsurface structures is a fundamental task in geophysical and geological studies. Logging data are usually acquired through drilling projects, which constrain the subsurface structure, and together with the description of drill core samples, are used to distinguish geological uni...
Үндсэн зохиолчид: | Suguru Yabe, Yohei Hamada, Rina Fukuchi, Shunichi Nomura, Norio Shigematsu, Tsutomu Kiguchi, Kenta Ueki |
---|---|
Формат: | Өгүүллэг |
Хэл сонгох: | English |
Хэвлэсэн: |
SpringerOpen
2022-06-01
|
Цуврал: | Earth, Planets and Space |
Нөхцлүүд: | |
Онлайн хандалт: | https://doi.org/10.1186/s40623-022-01651-0 |
Ижил төстэй зүйлс
Ижил төстэй зүйлс
-
A new method for the empirical conversion of logging data to clay mineral fraction in the Nankai accretionary prism
-н: Suguru Yabe, зэрэг
Хэвлэсэн: (2020-10-01) -
Simultaneous estimation of in situ porosity and thermal structure from core sample measurements and resistivity log data at Nankai accretionary prism
-н: Suguru Yabe, зэрэг
Хэвлэсэн: (2019-11-01) -
Feature Selection for Hidden Markov Models and Hidden Semi-Markov Models
-н: Stephen Adams, зэрэг
Хэвлэсэн: (2016-01-01) -
Visual tracking using interactive factorial hidden Markov models
-н: Jin Wook Paeng, зэрэг
Хэвлэсэн: (2021-08-01) -
UTILIZING DISCRETE HIDDEN MARKOV MODELS TO ANALYZE TETRAPLOID PLANT BREEDING
-н: Nahrul Hayati, зэрэг
Хэвлэсэн: (2024-10-01)