Quantitative logging data clustering with hidden Markov model to assist log unit classification
Abstract Revealing subsurface structures is a fundamental task in geophysical and geological studies. Logging data are usually acquired through drilling projects, which constrain the subsurface structure, and together with the description of drill core samples, are used to distinguish geological uni...
Автори: | Suguru Yabe, Yohei Hamada, Rina Fukuchi, Shunichi Nomura, Norio Shigematsu, Tsutomu Kiguchi, Kenta Ueki |
---|---|
Формат: | Стаття |
Мова: | English |
Опубліковано: |
SpringerOpen
2022-06-01
|
Серія: | Earth, Planets and Space |
Предмети: | |
Онлайн доступ: | https://doi.org/10.1186/s40623-022-01651-0 |
Схожі ресурси
Схожі ресурси
-
A new method for the empirical conversion of logging data to clay mineral fraction in the Nankai accretionary prism
за авторством: Suguru Yabe, та інші
Опубліковано: (2020-10-01) -
Simultaneous estimation of in situ porosity and thermal structure from core sample measurements and resistivity log data at Nankai accretionary prism
за авторством: Suguru Yabe, та інші
Опубліковано: (2019-11-01) -
Feature Selection for Hidden Markov Models and Hidden Semi-Markov Models
за авторством: Stephen Adams, та інші
Опубліковано: (2016-01-01) -
Visual tracking using interactive factorial hidden Markov models
за авторством: Jin Wook Paeng, та інші
Опубліковано: (2021-08-01) -
UTILIZING DISCRETE HIDDEN MARKOV MODELS TO ANALYZE TETRAPLOID PLANT BREEDING
за авторством: Nahrul Hayati, та інші
Опубліковано: (2024-10-01)