HISTORIC BUILDING INFORMATION MODELLING – ADDING INTELLIGENCE TO LASER AND IMAGE BASED SURVEYS

Historic Building Information Modelling (HBIM) is a novel prototype library of parametric objects based on historic data and a system of cross platform programmes for mapping parametric objects onto a point cloud and image survey data. The HBIM process begins with remote collection of survey data us...

Full description

Bibliographic Details
Main Authors: M. Murphy, E. McGovern, S. Pavia
Format: Article
Language:English
Published: Copernicus Publications 2012-09-01
Series:The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Online Access:http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XXXVIII-5-W16/1/2011/isprsarchives-XXXVIII-5-W16-1-2011.pdf
Description
Summary:Historic Building Information Modelling (HBIM) is a novel prototype library of parametric objects based on historic data and a system of cross platform programmes for mapping parametric objects onto a point cloud and image survey data. The HBIM process begins with remote collection of survey data using a terrestrial laser scanner combined with digital photo modelling. The next stage involves the design and construction of a parametric library of objects, which are based on the manuscripts ranging from Vitruvius to 18th century architectural pattern books. In building parametric objects, the problem of file format and exchange of data has been overcome within the BIM ArchiCAD software platform by using geometric descriptive language (GDL). The plotting of parametric objects onto the laser scan surveys as building components to create or form the entire building is the final stage in the reverse engin- eering process. The final HBIM product is the creation of full 3D models including detail behind the object's surface concerning its methods of construction and material make-up. The resultant HBIM can automatically create cut sections, details and schedules in addition to the orthographic projections and 3D models (wire frame or textured).
ISSN:1682-1750
2194-9034