On the Motion of Harmonically Excited Spring Pendulum in Elliptic Path Near Resonances
The response of a nonlinear multidegrees of freedom (M-DOF) for a nature dynamical system represented by a spring pendulum which moves in an elliptic path is investigated. Lagrange’s equations are used in order to derive the governing equations of motion. One of the important perturbation techniques...
Päätekijät: | T. S. Amer, M. A. Bek, I. S. Hamada |
---|---|
Aineistotyyppi: | Artikkeli |
Kieli: | English |
Julkaistu: |
Wiley
2016-01-01
|
Sarja: | Advances in Mathematical Physics |
Linkit: | http://dx.doi.org/10.1155/2016/8734360 |
Samankaltaisia teoksia
-
The dynamical analysis for the motion of a harmonically two degrees of freedom damped spring pendulum in an elliptic trajectory
Tekijä: T.S. Amer, et al.
Julkaistu: (2022-02-01) -
Analyzing the Stability for the Motion of an Unstretched Double Pendulum near Resonance
Tekijä: Tarek S. Amer, et al.
Julkaistu: (2021-10-01) -
The vibrational motion of a spring pendulum in a fluid flow
Tekijä: M.A. Bek, et al.
Julkaistu: (2020-12-01) -
Influence of the Motion of a Spring Pendulum on Energy-Harvesting Devices
Tekijä: Mohamed K. Abohamer, et al.
Julkaistu: (2021-09-01) -
Resonance in the Cart-Pendulum System—An Asymptotic Approach
Tekijä: Wael S. Amer, et al.
Julkaistu: (2021-12-01)